
NAVAL POSTGRADUATE SCHOOL
Monterey, California

VRML TERRAIN MODELING FOR THE MONTEREY
BAY NATIONAL MARINE SANCTUARY (MBNMS)

by

R. Greg Leaver

September 1998

Thesis Advisor:
Associate-Advisor:

Don Brutzman
Rex Buddenberg

Approved for public release; distribution is unlimited.

DSTC «"unmans

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE
September 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE : VRML Terrain Modeling for the Monterey Bay National
Marine Sanctuary (MBNMS)
6. AUTHOR
R. Greg Leaver

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING /
MONITORING

AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis develops an online model of the topographic terrain of Monterey Bay National Marine Sanctuary

(MBNMS) seafloor. Written in the Virtual Reality Modeling Language (VRML), the model is an interactive 3D
application composed of hundreds of topographic tiles linked together to form a mosaic of the bay. Low-resolution
tiles are traded for higher resolution tiles as the viewer gets closer to the terrain.

Important contributions include a naming convention for autogeneration of interlinked files, test usage of
proposed metadata conventions linking VRML and the extensible Markup Language (XML), demonstrated use of the
GeoVRML Working Groups proposed QuadLOD node, and a preliminary 3D navigation icon for terrain interrogation
and wayfinding. Terrain data was produced from registered, smoothed and subsampled bathymetric sonarscan
results. Because the model is geo-referenced with the Universal Transverse Mercator (UTM) coordinate system, a
user can easily add scientific content or data to a selected location of the MBNMS in a manner analogous to adding
2D content to an HTML page. Thus, the user can place 3D content anywhere in the MBNMS in geographic context
merely by specifying the geographic coordinates and depth of the content in standard VRML syntax.

Future work includes improvement of metadata interoperability, navigation icon user testing, and
autogeneration of image-based texture tiles for scientific visualization.
14. SUBJECT TERMS
World Wide Web, Virtual Reality Modeling Language (VRML), Large-Scale Virtual Environments
(LSVEs), Monterey Bay, 3D Graphics Modeling

15. NUMBER
OF PAGES

126
16. PRICE
CODE

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSD7ICATION OF
ABSTRACT
Unclassified

20.
LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

VRML TERRAIN MODELING FOR THE MONTEREY BAY NATIONAL
MARINE SANCTUARY (MBNMS)

R. Greg Leaver
Lieutenant, United States Navy

B.S., Oklahoma State University, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the.

NAVAL POSTGRADUATE SCHOOL
September 1998

Author:

Approved by:

R. Greg Leaver>

xf/
Don Brutzman, Thesis Advisor

Rex Buddenberg, Associate Ajdvisor

 ^-^.^
Reuben T. Harris, Chair

Department of Systems Management

in

IV

ABSTRACT

This thesis develops an online model of the topographic terrain of Monterey Bay

National Marine Sanctuary (MBNMS) seafloor. Written in the Virtual Reality Modeling

Language (VRML), the model is an interactive 3D application composed of hundreds of

topographic tiles linked together to form a mosaic of the bay. Low-resolution tiles are

traded for higher resolution tiles as the viewer gets closer to the terrain.

Important contributions include a naming convention for autogeneration of

interlinked files, test usage of proposed metadata conventions linking VRML and the

extensible Markup Language (XML), demonstrated use of the GeoVRML Working

Groups proposed QuadLOD node, and a preliminary 3D navigation icon for terrain

interrogation and wayfinding. Terrain data was produced from registered, smoothed and

subsampled bathymetric sonarscan results. Because the model is geo-referenced with the

Universal Transverse Mercator (UTM) coordinate system, a user can easily add scientific

content or data to a selected location of the MBNMS in a manner analogous to adding 2D

content to an HTML page. Thus, the user can place 3D content anywhere in the

MBNMS in geographic context merely by specifying the geographic coordinates and

depth of the content in standard VRML syntax.

Future work includes improvement of metadata interoperability, navigation icon

user testing, and autogeneration of image-based texture tiles for scientific visualization.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. MOTIVATION 1

C. OBJECTIVES 1

D. THESIS ORGANIZATION.... 2

II. BACKGROUND AND RELATED WORK 3

A. INTRODUCTION . 3

B. BACKGROUND 3

1. Monterey Bay National Marine Sanctuary 3

2. Monterey Bay Modeling Group 5

3. Coordinate Systems Used 5

4. What is VRML? 6

C. RELATED WORK 7

1. GeoVRML Working Group 7

2 Seamless Solution's Terrain Navigator 8

3. SIGGRAPH CARTO Project 8

4. VRML Terrain Generators 8

5. Synthetic Environment Data Representation & Interchange

Specification (SEDRIS) 9

6. Other Existing VRML Terrain Models 10

D. SUMMARY 10

III. PROBLEM STATEMENT 13

vii

A. INTRODUCTION 13

B. RESEARCH FOCUS 13

C. DESIGN CONSIDERATIONS 14

1. Transitions Considered 15

a. "SwapTile" Transition 16

b. "QuadTile" Transition 16

c. " QuadSwapTile" Transition 16

2. Transition Chosen 17

D. SUMMARY 18

IV. BATHYMETRIC TERRAIN DATA 19

A. INTRODUCTION 19

B. DATA PROCESSING 19

1. Data Source and Gridding Process 19

2. Partioning the Datasets 20

3. How Resolutions Were Determined 21

C. FILE NAMING CONVENTION 22

D. METADATA 22

E. SUMMARY 23

V. JAVA PROGRAMS FOR DATAFILE CONVERSION TO VRML 25

A. INTRODUCTION 25

B. CREATEVRMLTILE PROGRAM: GENERATING INDIVIDUAL

VRML TERRAIN TREES 25

1. Read Data File Name 26

2. Read Metadata 26

viii

3. Read Elevation Data 28

4. Geographically Position Tile 28

5. Write VRML Syntax 28

C. CREATEVRMLTREE PROGRAM: GENERATING LINKING

VRML TERRAIN TREES 28

1. Read Children File Names 29

2. Construct Parent and Children Relationship 29

3. Write VRML Syntax 29

D. SUMMARY 29

VI. VRML SCENE DETAILS 31

A. INTRODUCTION 31

B TERRAIN TILES 31

1. Metadata 31

2. Positioning 33

3. Navigation Icons 34

4. Elevation Grids 35

5. Textures 36

C. TERRAIN TREES 36

1. Switching 36

2. Viewpoints 37

D. SUMMARY 38

VII. EXPERIMENTAL RESULTS 39

A. INTRODUCTION 39

B. MONTEREY BAY TERRAIN MODEL DATABASE 39

IX

C. PERFORMANCE RESULTS AND USABILITY TESTING 40

1. Performance Aids 41

a. Vertical Exaggeration 41

b. Reducing File Size by Rounding 42

2. Performance Results 42

D. USER ACCESS AND NAVIGATION 43

E. EXAMPLE INTEGRATION OF CONTENT 45

l.Georeferencing 45

2. Adding Content 46

F. SUMMARY 47

VIII. CONCLUSIONS AND RECOMMENDATIONS 49

A. RESEARCH CONCLUSIONS 49

1. Generating VRML Syntax 49

2. Viewpoints 49

3. Rendering 50

4. Georeferencing and Content 51

B. RECOMMENDATIONS FOR FUTURE MBNMS TERRAIN

MODEL WORK 51

1. Normals to Eliminate Tile Seams 51

2. Modified QuadLOD Node 52

3. Navigation Icons to Control Other Transitions 53

4. Return of the Navigation Icons 54

5. Other MBNMS Model Future Work 54

C. OTHER LSVE FUTURE WORK 54

APPENDIX A: SCRIPTS USEDTO GRID DATA SETS 57

APPENDIX B: SCRIPT USED TO PARTITION DATA SETS 61

APPENDIX C: CREATEVRMLTILE JAVA PROGRAM 63

APPENDIX D: CREATEVRMLTREE JAVA PROGRAM 77

APPENDK E: EXAMPLE VRML TERRAIN TILE FILE STRUCTURE 81

APPENDIX F: EXAMPLE VRML TERRAIN TILE SCENE GRAPH 89

APPENDIX G: EXAMPLE XML FILE 93

APPENDIX H: EXAMPLE VRML TERRAIN TREE FILE STRUCTURE 95

APPENDIX I: EXAMPLE VRML TERRAIN TREE SCENE GRAPH 97

LIST OF REFERENCES 99

INITIAL DISTRIBUTION LIST 101

XI

Xll

LIST OF FIGURES

2.1 Monterey Bay National Marine Sanctuary 4

2.2 Focus of GeoVRML Working Group 7

3.1 Tile Transitions 15

3.2 Tile Transition Types 17

3.3 Implementation of QuadSwapTile Transition18

4.1 File Naming Convention 22

5.1 Typical Metadata Excert From Gridded Text Data File 27

6.1 Example XML Keys and Key Values Used in Metadata Node 33

6.2 A Navigation Icon 35

6.3 A Single Elevation Grid (File N353610.W1232629.070.051.1000.seabeam.wri) .35

6.4 QuadLOD Excerpt (File N353610.W1232629.070.051.1000.tree.wri) 37

7.1 Directory Structure of MBNMS Terrain Model Database 39

7.2 Applying Vertical Exaggeration 41

7.3 3:1 Scaling Example (FileN353611.W1223609.070.051.1000.seabeam.wri) 41

7.4 1:1 Scaling Example (File N35361 l.W1223609.070.051.1000.seabeam.wri) 42

7.5 Entry Viewpoint of MBNMS Terrain Model 44

7.6 Georeferencing VRML and UTM Coordinate Systems 46

Xlll

XIV

LIST OF TABLES

4.1 File Partition Characteristics by Resolution for Entire MBMNMS Footprint 21

6.1 Quadlod Node Proximity Sensor Values 37

7.1 Terrain Tile Dataset Characteristiics 40

7.2 Terrain Tree Dataset Characteristics 40

7.3 Rendering Time for Resolutions 43

7.4 Tile Switching Values (depth) 45

XV

XVI

ACKNOWLEDGEMENTS

To my wife Sandra, my daughter Lauren, and my son Chase, thank you all for

supporting me in this endeavor. I love and treasure each of you more than mere words

can say. To Don Brutzman, I offer my thanks for your contagious inspiration,

enthusiasm, and guidance. To Ray McClain, I am indebted to you for your assistance in

this project. I couldn't have done it without your help.

XVU

I. INTRODUCTION

A. BACKGROUND

This thesis investigates how the Virtual Reality Modeling Language (VRML) can

be used to model the seafloor topography of the Monterey Bay National Marine

Sanctuary (MBNMS). By creating a topographic model of the MBNMS using VRML, a

three-dimensional representation of the sanctuary can be accessed over the World-Wide-

Web (Web) by anyone using a VRML-enabled web browser or standalone VRML

viewer. A VRML-enabled browser means a browser configured with a VRML plug in

such as Cosmo Player for PCs (Silicon Graphics, 98). Rapid recent progress in this field

means that many new opportunities are available.

B. MOTIVATION

Numerous scientists and researchers are collecting data and building

environmental models about Monterey Bay. Regional research partnerships using a

Large Scale Virtual Environment (LSVE) for Monterey Bay will make it easy for

scientific content about Monterey Bay to be placed and accessed online. Building a

Monterey Bay terrain model is a dramatic way to encourage scientists to their work in

three-dimensional (3D) space and on the Web. New insights and new research

collaborations are likely. A new paradigm for publication of scientific data and analytic

results is possible.

C. OBJECTIVES

The goal is to make the addition of a user-selected portion of MBNMS terrain in a

3D VRML scene as easy as adding a background image to a 2D HTML page. Thus, it is

hoped that this effort will make it easy for scientific content about Monterey Bay to be

placed and accessed online, in a 3D geographic context.

Although many scientists are conducting research in Monterey Bay, bathymetric

terrain scenery is not easily available. VRML makes 3D graphics accessible to any

desktop. Constructing a LSVE for Monterey Bay may dramatically enhance ongoing

regional research collaborations. An additional objective is for the model to support

variable resolutions of gridded data. "Variable resolutions" essentially means that as a

viewer gets closer to terrain, the resolution of the terrain increases to provide superior

granularity.

D. THESIS ORGANIZATION

The remaining chapters of this thesis are organized as follows. Chapter II

provides the background for the effort, introduces a few cartographic concepts, and

touches on some related work being done. Chapter III presents the problem statement

and covers design considerations for a feasible solution. Chapter IV provides a look at

bathymetric data sources and describes the gridding process used to create simple gridded

text data files. Chapter V shows how these elevation grid terrain text files can be

processed by a Java program to produced VRML world files. Chapter VI discusses the

specific VRML constructs produced by the Java programs that implement the MBNMS

terrain model, including 3D navigation/information icons. Chapter VII considers

experimental results, examines user access, and shows how users can integrate their 3D

content and MBNMS terrain. Chapter VIII presents thesis conclusions and provides

recommendations for future work.

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION

This chapter examines pertinent background work that motivated the construction

of a terrain model for the MBNMS and introduces the basic concepts of VRML. It also

discusses other work being done to produce 3D topographic models, and provides a quick

look at a tool evaluated by the author that creates 3D topographic scenery in VRML from

elevation data sets.

B. BACKGROUND

1. Monterey Bay National Marine Sanctuary

Beginning 11 km north of San Francisco's Golden Gate Bridge, the MBNMS1

extends 260 km south along the California coast to Cambria Rock in San Luis Obispo

County. The Monterey Bay National Marine Sanctuary contains the nations greatest

diversity of marine life and habitat. East to west, the sanctuary stretches 152 km and

holds one of the world's largest ocean canyons: the 10,663 ft. deep Monterey Canyon.

Thus, this area provides unparalleled opportunities for marine scientists based at nearby

research institutions such as Moss Landing Marine Laboratories (MLML), Monterey Bay

Aquarium Research Institute (MBARI), and NPS. Figure 2.1 illustrates the MBNMS

region. The sanctuary was established to enhance resource protection and preserve the

natural beauty within its boundaries.

1 More information on the MBNMS is available at http://bonita.mbnms.nos.noaa.gov/

275 km

220 km

165 km

110km

55 km

0km

1$M

170 km 135 km 90 km 45 km

Figure 2.1. Monterey Bay National Marine Sanctuary (MBNMS Web Site, 98)

0km

2. Monterey Bay Modeling Group

Interest in developing computerized processes and models to assist with studying

and managing the sanctuary led to the formation of the Monterey Bay Modeling Group.

In 1993, the MBNMS Research Advisory Committee, under the sponsorship of the

National Oceanic and Atmospheric Administration (NOAA), prepared a research plan

which outlined the research priorities and management goals for the sanctuary. This plan

outlined the objectives of the Monterey Bay Modeling Group, an ad hoc group of

individuals interested in computer modeling and affiliated with various MBNMS research

organizations, including NPS. Listed among the objectives was the goal for the

development of a computerized model of the sanctuary (NOAA, 93). The model, it was

hoped, would ultimately function as an oceanographic scientific database archival and

retrieval system, which could be overlain on a 3D physiographic representation of the

MBNMS. The model would be networked for use by scientists, engineers, planners,

managers, and the general public. Unfortunately this group was only active for two

years. Recent discussions indicate that technology has advanced sufficiently to enable

further scientific collaborations.

3. Coordinate Systems Used

In terms of latitude and longitude, the MBNMS occupies a square region between

35°30" North and 38° North latitude, and 123°15' East and 121° East longitude. Since

latitude and longitude are commonly used measures, they are included in the model's

metadata and file-naming convention. Universal Transverse Mercator (UTM)

coordinates, which specify a location as a distance north (Northing) and east (Easting)

1A good explanation of the UTM coordinate system is available at: http://geography.tqnm/msubl4.htm

from a zone's meridian measured in meters, are also frequently used in cartography. In

terms of the UTM system, the MBNMS lies between Northing coordinates of

3,940,000m to 4,200,000m, and Easting coordinates of 460,000m to 612,000m. Because

UTM coordinates are in meters rather than degrees, UTM measurements can easily be

converted to VRML coordinates that are default units in meters. This capability allows

gridded elevation data and scientific content to be positioned relative to their real world

location in the MBNMS model.

4. What is VRML?

VRML - the Virtual Reality Modeling Language - is a 3D graphics scene

description language that enables a scene builder to create dynamic worlds and sensor

rich virtual environments on the Internet. VRML enables users to animate objects in

worlds, making them move; it also enables users to play sounds within worlds, interact

with worlds and, control and enhance worlds with scripts, or small programs (Ames, et.

al., 97). VRML provides a standardized, portable, and platform-independent way to

render dynamic, interactive, 3D scenes across the Internet (Brutzman, 97).

A VRML file generally ends with extension ".wrl". This file is a textual

description of a 3D world. A VRML file contains nodes that describe shapes and their

properties in the virtual world. These nodes make up the building blocks - VRML

constructs - which create the 3D scenery in a virtual world. For cartographic models

such as this project, one of the principal VRML constructs is the ElevationGrid node,

which can be used to create a 3D representation of the terrain. The terrain itself is

described by a data set containing bathymetric depth values. Each sampled depth value is

associated with a pair of gridded 2D coordinates. An excellent overview of how VRML

can be applied to cartography can be found in Fairborn and Parsley (97).

C. RELATED WORK

1. GeoVRML Working Group

To provide a forum for discussions of the representation and exchange of properly

geo-referenced data in VRML advance, the GeoVRML Working Group was established.

One of the forum's goals is to establish VRML as a standard for the representation and

exchange of 3D geographic and cartographic data. The GeoVRML mailing list is

maintained as part of the GeoVRML Working Group of the VRML Consortium by SRI

International. Figure 2.2 shows the primary issues of interest and concern of the working

group.

• Coordinate systems - measurement systems including the Geodetic and
Geocentric systems used to specify locations on the surface of the Earth.

• Time referencing - important for content that is timestamped with respect to a
an absolute reference.

• Terrain representation - imagery usually represented in an array of numbers
that represent topography in digital form.

• Levels of detail - the hierarchy of resoltions necessary to achieve acceptable
rendering and performance for a LSVE

• Resolution and accuracy - factors limited by georeferencing VRML worlds to
a coordinate system and by data storage issues.

• Data interchange - standardized data format and type to enable data exchangge
and interoperability.

Figure 2.2. Focus of GeoVRML Working Group (Iverson, 98)

2. Seamless Solution's Terrain Navigator

The Terrain Navigator is implemented entirely in Virtual Reality Modeling

Language (VRML) for use on a low-cost Personal Computer (PC) to enable a content

developer to integrate highly realistic terrain content with Web pages. This real-time

interactive visualization software is especially useful for collaborative review of database

development throughout the design cycle or for entertainment purposes. (Seamless

Solutions, 98).

3. SIGGRAPH CARTO Project

The "Carto Project" began in 1996 as a cross-organizational collaboration

between the activities of the Association for Computing Machinery's Special Interest

Group on Graphics (ACM SIGGRAPH) and the International Cartographic Association's

(ICA) Commission on Visualization. The Carto Project explores how viewpoints and

techniques from the computer graphics community can be effectively applied to

cartographic and spatial data sets. This includes exploring how viewpoints and methods

from cartography can enhance developments in computer graphics; especially those

associated with the representation of geographic phenomena. These efforts will continue

into 1999, in conjunction with the time frame of the ICA's Commission on Visualization

(Rhyne, 98).

4. VRML Terrain Generators

Several commercial products exist that can automatically generate VRML terrain.

To do so, generally these products import a dataset in a prescribed format such as Digital

Elevation Model3 (DEM) and produce export a VRML file via a filter. Rapid Imaging

Software offers a product called LandForm Gold (RIS, 98) that works like this. A copy of

this software was evaluated by this author, courtesy of Mike Abemathy at RIS.

LandForm Gold is a powerful 3D real-time terrain viewer for the Windows NT/95

platform. This product allows a user to view geographical data in a three-dimensional

3 DEM files contain data of the elevation of the terrain over a specified area, usually at a fixed grid

representation and move through the data in a natural and intuitive manner. The program

accepts numerous file types and allows the user to superimpose an image of the area over

the terrain. This effect of the image overlay combined with 3D data creates a strikingly

realistic representation of the terrain, as landmarks and topographical features are

dramatically revealed in 3D. As mentioned earlier, LandForm Gold also enables the user

to create VRML models based upon the dataset read by the viewer. Other tools, such as

Cybertrek (98) and Coryphaeus (98) are also available to create VRML terrain models,

but were not evaluated by this author.

5. Synthetic Environment Data Representation & Interchange

Specification (SEDRIS)

The SEDRIS Geographic Reference Model (GRM) has been proposed by the

GeoVRML Working Group (discussed later) as a standard for VRML coordinate

systems. SEDRIS is a reference model and software package that currently supports 12

different commonly used world coordinate system convention, as well as tools to

automatically convert reference marks between them. Coordinate system standards

supported include Geodetic (GDC or latitude/longitude), Geocentric (earth centered

Cartesian), Universal Transverse Mercator (UTM), and Lambert Conformal Conic

(LCC). The proposal (GeoVRML, 98) was drafted by SRI International and is

summarized here. It proposes two levels to employ VRML constructs that implement the

SEDRIS standards. Level 1 consists of a means of entering geographical coordinates into

VRML files so that the Cartesian VRML coordinates are generated with respect to a

geographically referenced local coordinate system. Its use depends only on the

interval, such as 1 arc-degree or 7.5 arc-minutes. DEM files are avilable (for a fee) from the U.S.
Geological Survey at: http://ed.cwww. cr. usgs.gov/webglis

availability of a library for converting from geographical coordinates in the GRM into a

local Cartesian frame. Level 2 consists of an attempt to establish a means for

automatically managing the relationships between the local Cartesian frames defined in

Level 1. It is intended as the enabling technology for seamlessly integrating accurately

georeferenced worlds from a wide variety of sources. Since the constructs contained in

the proposal are experimental at this time, they were not employed in the MBNMS

Model. Nevertheless they remain an important area for future work.

6. Other Existing VRML Terrain Models

SRI International has developed a VRML terrain model of the Fort Irwin,

California area. This terrain model has been distributed on CD-ROM and is also

viewable on the Web (SRI, 98). It uses multiple levels of detail to change the terrain's

resolution based upon the viewer's distance to the scenery. In 1997 RIS produced a

model of the San Francisco Bay area (Abernathy, 98). This model was produced to

convey topographical information to participants in the San Francisco Relay. By

integrating Global Positioning Satellite elevation data with satellite and aerial imagery,

the model displayed the terrain the event's course and scenery from a runner's point of

view.

A simple textured model of Monterey regional terrain is also available at

http://ece. uwaterloo. ca/vrml98. It provides background for the VRML 98 Symposium

3D website

D. SUMMARY

This chapter explores the related work that preceded or motivated the creation of

a model for the MBNMS. It places the sanctuary in a geographical context and presents

10

the goals of the Monterey Bay Modeling Group. A brief overview of VRML provides

some basic concepts of this scene-description language. Work related to VRML terrain

development is considered and VRML terrain authoring tools are introduced - one of

which is evaluated by the author. Additionally, some existing VRML terrain models are

identified.

11

12

in. PROBLEM STATEMENT

A. INTRODUCTION

Although excellent commercial software exists for professional development of

topographic models (both VRML and non-VRML) in 3D, these tools can be expensive

and may require data sets to be in a proprietary format. Furthermore, the tools are not

only necessary to generate the topographic models; they are also often required to be

present on a user's console in order to view the models. By representing the model in

VRML, an open solution to the problem of generating topographic data sets and

subsequently viewing them is obtained. Anyone with a web browser and WWW access

can potentially interact with the model. This chapter covers the problem of developing

such an application. It then discusses the advantages of VRML as the basis for

implementing a solution. Much of the chapter is devoted to an examination of the design

issues considered in the development of a model solution.

B. RESEARCH FOCUS

In the last few years, advances in 3D modeling languages have made it feasible to

develop the foundation for a 3D model of the MBNMS. VRML in particular enables the

development of a model that can be viewed over the WWW on any platform with

Internet access and a VRML enabled browser. In order to place arbitrary research

information about the MBNMS in a geographic context, a user needs to be able to relate

MBNMS data with the location the data describes or pertains to in the sanctuary. By

constructing the model in VRML, a background of the appropriate geographic location

can be added in a manner analogous to adding a background texture to a 2D HTML page.

VRML can be geo-referenced with a cartographic coordinated system to support the

13

addition of the terrain to a scene. The goal of this thesis is the development of a VRML-

based model of the MBNMS that is accessible over the Web which can enable a user to

select a portion of Monterey Bay National Marine Sanctuary (MBNMS) terrain and

easily add scientific content or data to the selected scenery. Thus, the end product will

allow the user to place 3D content in a geographic MBNMS context. Of primary concern

when attempting to construct such a model is the methodology by which low-resolution

3D scenery is exchanged for higher resolution scenery, all the while maintaining the

overarching context of the MBNMS environment with the content added. Because

bathymetric data of the MBNMS seafloor is available and that data can be gridded to

various resolutions, and because the model needs to be based upon open-standard VRML

that is directly authorable, commercial development tools are not required for this effort.

C. DESIGN CONSIDERATIONS

In addition to being accessible via the Web, a VRML model of the MBNMS

needs to be navigable and geographically accurate. The units of measurement should be

in meters and coordinates specified where possible to foster cartographic relation and

interpretation. The process of switching between resolutions is an important

consideration that leads to the introduction of two important terms: tiles and transitions.

The term tiles refers to a VRML file covering a certain sized horizontal area that can be

exchanged for another tile or group of tiles at a different resolution. The term transition

describes the method of the actual change, i.e., the mechanics of the switch. Thus a tile

undergoes a transition from one resolution to another. The method used for transiting

between resolutions has dramatic performance implications.

14

•high
spatial
resolution

•high file
size W

e
S
0
I
u
t
i
o
n

•low
spatial
resolution

•low file
size

D G a □

a a a a

a a a a

anna

a a a a

•Small area tiles Tile Area •!**&«**&*

Figure 3.1. Tile Transitions

1. Transitions Considered

The effectiveness of transitions to switch between higher and lower resolution

tiles is not just a function of the mechanism used. It is also dependent upon file download

time (which is a function of file size and bandwidth) and platform rendering speed.

Figure 3.1 illustrates the transition schema. To minimize bandwidth requirements,

multiple resolution tiles arranged in a tree hierarchy can be used. Thus, only low-

resolution tiles need to be loaded initially. As the viewer gets closer to a region of

interest, the lower-resolution tiles are switched out with higher-resolution tiles, which are

downloaded as needed. Minimal level of detail (resolution) also aids in platform-

rendering speed. Transitions can be considered to be of three types: "SwapTile,"

"QuadTile" and "QuadSwapTile." The three types are illustrated in Figure 3.2.

15

a. "SwapTile" Transition

This transition swaps a single low-level tile of given area for a single tile

of twice the resolution with the same area. Thus, there is a one-for-one tile exchange

when this transition occurs.

b. "QuadTile" Transition

This transition trades a low-level tile of given area for four tiles (a quad)

that are each the same resolution as the parent tile. The total area of the four tiles covers

the same area as the single, previously viewed tile.

a "QuadSwapTile" Transition

This transition trades a low-level tile of given area for four tiles that are

twice the resolution of the parent tile. In other words, a quad of high resolution tiles

switches out one low-resolution tile. This transition is equivalent to doing a combination

of the other two transitions, i.e., "QuadSwapTile" = ("SwapTile" + "QuadTile").

Nevertheless, a SwapTile + QuadTile combination is less efficient than a QuadSwapTile

transition since additional intermediate files must be loaded.

16

•High spatial
resolution

•high file size

R
e
s
o
I
u
t
I

I
0
n

•Low spatial
resolution

•Low file size

00, '©ODilffl®111 IfoilffDgKta

,ro

^ ^
•Small tiles Tile Area LargetUes

Figure 3.2. Tile Transition Types

If the user's goal is to gain successively higher resolution, note that the direction

of the transitions is important. As a region of interest is approached, transitions will tend

to be toward higher grid/file resolution in combination with smaller tile subdivisions, i.e.,

upward and leftward on the above two charts. Alternatively, as a region of interest is

exited, transitions will be downward and rightward as a region of interest is exited.

2. Transition Chosen

The "QuadSwapTile" transition was chosen for the implementation of this project

because its result is a combination of the other two transitions and it offers a scalable

means of implementing a hierarchy of switching trees. Its concept is also supported by

an existing VRML construct (discussed in Chapter VI). Thus it can be readily

17

implemented once the terrain tiles are developed. Figure 3.3 displays the design of the

project using the "QuadSwitch" transition. Nevertheless, the other two transitions, the

QuadTile and the SwitchTile, remain useful (at least theoretically) to support higher-

resolution rendering on higher-performance machines, with the dataset quickly

retrievable via dedicated Internet connections or local disk availability. Future work to

integrate all three transitions is discussed in Chapter VIII.

•high
spatial
resolution

•high file
size

•low
spatial
resolution

•low file
size •Small tiles' area Tile Af£3 'Large tiles' area'

Figure 3.3. Implementation of QuadSwapTile Transition

D. SUMMARY

This chapter describes the nature of the problem that this thesis addresses. It

discusses some of the advantages to using VRML as the scene description language to

implement a solution and some of the reasons why existing tools are not required. It

examines terrain tile-swapping characteristics of design in detail.

18

IV. BATHYMETRIC TERRAIN DATA

A. INTRODUCTION

This chapter discusses the data used in the MBNMS Terrain Model. It covers the

source and processing of the data. It explains how raw, ungridded, topographic data is

gridded to desired resolutions and how monolithic grids are partitioned into smaller

sections. It describes how file names are built for gridded data files and explains the

metadata included with those files.

B. DATA PROCESSING

1. Data Source and Gridding Process

Ungridded bathymetry data, which is simply raw elevation data of the seafloor

topography, has data points at intervals determined by the sampling rate of various

oceanographic surveys. The data points equal the depth of the ocean at that sampled

spot. The database containing the ungridded bathymetric is maintained by the U.S.

Geological Survey (USGS). The USGS obtained the data by way of the Seabeam-sonar

oceanographic survey done by the National Oceanic and Atmospheric Administration.

Moss Landing Marine Laboratories (MLML) obtained a copy of the data (MLML, 98)

which is now public domain (USGS, 98).

In order to be useable for a MBNMS Terrain Model, the raw data needs to be

gridded at an evenly spaced interval (post-spacing) such that each data point is a fixed

distance from each neighbor. Posts refer to the notion that elevation heights at regular

intervals are similar to posts of different heights spaced throughout a flat field. Thus, the

data points form a grid at a given resolution. The closer the points are to one another, the

higher the resolution of the grid. The raw, ungridded dataset for MBNMS comprises one

19

large 40 MB file. This dataset can be gridded to various resolutions using the Kriging

Algorithm.4 Using this algorithm as implemented in a GIS program named "Surfer for

Windows," (Golden Software, 98). Ray McClain of MLML gridded the entire dataset at

post-spacing-interval resolutions of 2000,1000, and 500 meters, respectively. Appendix

A contains scripts for batch files that accomplish this. This effort effectively created three

new datasets, each describing the entire seafloor topography of the MBNMS at the

respective resolutions (McClain, 98).

2. Partitioning the Datasets

Each of the five gridded datasets can be divided into partitions. Each partition

contains bathymetric data describing a piece of the MBNMS at the gridded resolution.

The original coordinate system used in Seabeam Survey data is in decimal degrees

(latitude/longitude) format. However, the coordinate system needed in the final

partitioned files is UTM. To perform this conversion, MLML developed a script

(Appendix B) that creates a batch file to input into a geographic information system

(McClain, 98). This GIS, called "TNTmips" (Microimages, 98) used the batch file to

perform the coordinate system conversion and partitioned the datasets as necessary. Table

4.1 shows the outcome of the partitioning process.

4 Kriging is a method of interpolation which predicts unknown values from data observed at known
locations. This method minimizes the error of predicted values which are estimated by spatial distribution
of the predicted values. MLML used a Linear Variogram model with no anisotropy, no
drift, and a zero nugget effect.

20

Ktsoluiion
(Post-

spacing) of
(l.lt.lSi.t

Nuink'i of
partitions,
in dataset

\ um Im nf
posts in:,
partition

I'at tit iun file-
size in ..••'.

-kilobytes (KB) -

\^ri-«;atc MHNMs »aid
: Set Size Jn. .

■.'••';■•■''•'•"kilobytes (KB) .;

2000m 1 10,087 90KB 90KB

1000m 4 10,087 90KB 360KB

500m 16 10,087 90KB 1,440KB

Totals 21
All have

10,887 posts
All file sizes

are 90 KB 1,890 KB
Table 4.1. File Partition Characteristics by Resolution for Entire MBMNMS Footprint

3. How Resolutions Were Determined

The three resolutions (2000m, 1000m, and 500m) were determined by considering

the interplay between file size, maximum dataset size and post-spacing resolution

intervals. Note in that in Table 4.1, above, the file size for any one partition is constant

since the number of posts in all partitions is the same. This occurs because as

postspacing is halved, the surface area covered by a partition drops to one-fourth the area

of the previous, higher resolution partition, keeping the number of posts and thus the file

size constant. The desired top-level (lowest) resolution partition was determined by

considering download time and area covered by a partition. The maximum acceptable

download wait for a file was judged to be 30 seconds. On a low bandwidth connection

then, such as a dial up 28.8 kilobit per second modem, and allowing for throughput

reduction resulting from data control overhead, the maximum file size could not exceed

100 KB. Due to the area of the MBNMS, this results in a 2,000m post-spacing top-level

file, with resolution doubling at each step.

21

C. FILE NAMING CONVENTION

A critical requirement for automated development of a large-scale database is that

file names be self-describing in order that both human-readable and machine-readable.

Therefore, a file-naming convention was developed that included pertinent attributes of

each file in the file's name. The name specifies the location of the file's data, the

postspacing, and the data source. Figure 4.1 shows the convention and gives an example

file name. File naming is a general requirement for Web-based terrain. This convention

likely has wide applicability.

File attributes Example Explanation

location latitude N353610 North 35°36*10"
location longitude W1232629 West 123°26'29"
north-south minutes 140 140' = grid height
east-west minutes 101 101' = grid width
post spacing, meters 2000 2,000 = post spacing
data survey SEABEAM source of data

| GRD =text-based grid data file
file type GRD, WRL, JPG < WRL = VRML file

(^ JPG = image file (texture)

Example File Name: N353610 .W1232629.: L40.101.2000.seabeam.wri

Figure 4.1. File Naming Convention

D. METADATA

Metadata or "data about data" describe the content, quality, condition, and other

characteristics of data. Metadata are used to organize and maintain data, to provide

information to data catalogs and clearinghouses, and to aid data transfers. Metadata for

each file is included in the header of each file's data contents. Metadata includes

22

information about filename, post spacing, grid coordinate parameters, and data processes

used. A VRML construct developed to encapsulate metadata is explained in Chapter VI.

E. SUMMARY

This chapter provides information about the data used that forms the foundation

of the MBNMS Terrain Model. The origin of the raw data is covered, and the processes

of gridding and partitioning the data are explained. Also discussed is the reasoning used

to determine the grid resolutions. The file-naming convention is described, and an

example file name given. Finally, metadata considerations are noted.

23

24

V. JAVA PROGRAMS FOR DATAFILE CONVERSION TO VRML

A. INTRODUCTION

Two Java programs were written to produce two types of VRML files that

represent the MBNMS as a 3D model. The first program uses gridded data files provided

by Moss Landing Marine Laboratories to create the necessary VRML terrain syntax. This

Java program also automates the tile-positioning process, whereby tiles are aligned to

correspond with their real-world geographic locations. To link together the terrain tiles, a

second Java program generates VRML scenes that contain embedded VRML trees which

select the level of detail appropriate for the scene relative to the viewer's location.

B. CREATEVRMLTILE PROGRAM: GENERATING INDIVIDUUAL

VRML TERRAIN TILES

As noted in Table 4.1, MLML generated a total of 21 gridded data files. For each

gridded data file, one VRML tile is required. Thus, 21 VRML tiles needed to be

produced. An automated solution to importing the gridded text data and exporting

VRML files was produced by writing a Java program. Each VRML tile needed to

contain certain cross-linking constructs; these constructs are explained in detail in

Chapter VI. Furthermore, VRML tiles need to be offset, or translated, by the distance (in

meters) corresponding to the real-world area described by the tile's data. By translating

each tile by the correct value, each of the five resolution datasets will appear as a nearly

seamless mosaic. For each resolution, a Java class was produced. Appendix C is a

CreateVRMLTile Java class that generates terrain tiles using partitions with 1000 meter

post spacing. Before running the program, a list is constructed which contains the names

of the gridded data files at a given resolution, with one file name on each line. For a

25

given resolution, the partitions that make up the dataset are essentially simple rectangular

pieces of the MBNMS; they can be assembled in the correct order to make a complete

representation of the topography at that resolution. In the case of the 500m resolution,

there are 16 gridded data files in a 4x4 arrangement that comprise the area of the

MBNMS in a two-dimensional (2D) array. The 16 files can be lined up, one after the

other, in order of location. For each of the five datasets, with each dataset at a different

post-spacing, the CreateVRMLTile program does the following:

1. Read Data File Name

One at a time, names of gridded data files are obtained and operations to produce

output based upon that file's data are performed. After getting the name of the first

gridded data file in the array, that data file is opened so that its contents may be read.

2. Read Metadata

Next, the program reads the metadata contained in the gridded data file's header.

A typical excerpt appears in Figure 5.1.

26

*** Filename ***
N353610.W1232629.070.051.1000.seabeam.wri

*** Extents Lat/Lon ***
#NW corner
N36d46m29s
W123d26m53s

#NE corner
N36d4 6m30s
W122d35m47s

#SW corner
N35d36ml0s
W123d26m29s

#SE corner
N35d36mlls
W122d36m09s

*** Extents UTM ***

#NW corner
4070000 Northing
460000 Easting

#NE corner
4070000 Northing
536000 Easting

#SW corner
3940000 Northing
460000 Easting

#SE corner
3940000 Northing
536000 Easting

*** Post Spacing ***
1000 m

*** Original Surfer Header ***

DSAA
77 131
460000 536000
3.94e+006 4.07e+006
-3811.36 -1449.41

Figure 5.1. Typical Metadata Excerpt From Gridded Text Data File

27

3. Read Elevation Data

The program reads the elevation posts which are used to construct a VRML

elevation grid.

4. Geographically Position Tile

The program computes, in meters, the necessary distance to translate the VRML

tile. This distance is used to geographically position the tile in the MBNMS mosaic.

Also computed and written to file is the center coordinate of the tile, to be used later in

the second type of Java program, described later in this chapter.

5. Write VRML Syntax

The file-naming convention is observed throughout this process. The program

writes VRML syntax to a file whose name corresponds to the gridded data file. A VRML

header is produced along with a VRML construct to recreate the metadata of the data file.

The program then produces VRML constructs that create a navigation icon, an elevation

grid, and local viewpoints that are tied to the navigation icon. The viewpoints are

exported to a separate file that is inlined into the top-level scene.

As each individual terrain tile files is completed, the name of the next gridded

data file is obtained and the above process repeated until there are no more gridded data

files to import.

C. CREATEVRMLTREE PROGRAM: GENERATING LINKING VRML

TERRAIN TREES

The VRML construct that performs the switching between resolutions requires a

tree structure whereby a parent tile can be exchanged for four children tiles. These trees

are then nested to produce the switching architecture. Two tree levels are required for the

28

overall application, corresponding to the two top-most resolutions, i.e., 2000m and

1000m. Trees do not need to be generated for the highest-resolution tiles, i.e., the 16 500

m tiles. A Java program was developed to automate the process of generating the trees.

Appendix D is a CreateVRMLTree Java class that generates four 1,000 m-resolution

trees. The works in the following manner:

1. Read Children File Names

For each of parent generated in the tree, the program reads in the names of the

files that become the children ofthat parent and stores those names in an array.

2. Construct Parent and Children Relationship

The program builds the tree structure by extracting from the array the proper

children for that tree and computes the parent's name based upon childl's name. The

program then reads the center VRML coordinates of the parent tile, which were exported

to file as a result of running the tiling program described in section B of this chapter.

3. Write VRML Syntax

Using the information stored from the above procedures, the program then writes

the VRML syntax that creates the file that contains the tree that corresponds to the tile for

that level of resolution and location. One tree consists of one parent and four children.

The process is then repeated until there are no trees left to create for the given resolution.

The overall process is repeated again at the next post-spacing resolution.

D. SUMMARY

This chapter describes the process of generating VRML syntax. Two Java

programs are introduces that automate the process of generating VRML syntax. The first

program reads gridded data files, selects the proper latitude-longitude area, and exports

29

VRML terrain syntax to create the tile structure of the MBNMS mosaic. The second

program creates VRML syntax to create files that contain VRML constructs, which select

a level of detail appropriate for the scene relative to the viewer's location.

30

VI. VRML SCENE DETAILS

A. INTRODUCTION

This chapter describes the VRML constructs contained in the two sets of VRML

files that together comprise the MBNMS Terrain Model. The first set of files, the terrain

tiles, contain the VRML nodes that create the actual geometry of the shapes in the scene.

The second set of VRML files, the terrain trees, contain the VRML nodes that acts as a

switch to trade a low-resolution parent tile for a group of higher resolution children tiles.

B. TERRAIN TILES

For a given resolution, many terrain tiles make up the entire MBNMS. Table 4.1

summarizes tile file size and inventory. Terrain tiles are a textual description of a virtual

seafloor region. Appendixes E and F are an example terrain tile and scene graph,

respectively, for file N353610.W1232629.070.051.1000.seabeam.wri. Terrain tile

constructs are explained below.

1. Metadata

A Metadata prototype node has been proposed (Lipkin, 98) which contains

pertinent information relating to the contents of a VRML scene. For this project,

metadata includes authorship, data origin, geographic coordinates covered by tile, and

other relevant tile-specific information. Implemented using VRML's EXTERNPROTO

facility, the node permits the Metadata node information to be contained in a string

written in Extensible Markup Language (XML) format (XML, 98). Since this exposed

field contains XML code in-line as well as the location of an XML document (containing

the same metadata) the Metadata node allows easy access to the metadata contents.

31

As far as possible, the XML keys and key values used correspond to the Dublin

Core Metadata Element Set, a 15-element set intended to facilitate discovery of

bibliographic information and electronic resources (Weibel, 98). Also considered in

determining the key/key value pairs was the Federal Geographic Data Committee

Metadata Standard which requires federal agencies to document the data that they

produce beginning in 1995 (FGDC, 94).5 Using these references as a guide, the XML

keys for the MBNMS model were developed. The keys (with example key values) are

shown in Figure 6.1. These key/key value pairs also appear inlined in the final VRML

file (e.g., N353610.W1232629.070.051.1000.seabeam.wri. in Appendix E) and in the

corresponding (XML file N353610.W1232629.070.051.1000.seabeam.xml) in Appendix

G). Because of the Metadata node's recent availability, it is not a functioning node in the

MBNMS model. However, the syntax for a potential functioning node is provided in

each terrain tile along with the actual metadata. Extensive additional work is expected in

the funtionality of Metadata nodes, as well as in widespread application of metadata

key/key value conventions in terrain data files.

5 An excellent example of a NOAA implementation of the FGDC standard can be found at
http://www, esc, noaa. zov/metadata/text/seaview metadata, html

32

Key = "Key Value"

Title = "Monterey Bay National Marine Sanctuary Terrain Model
Subject = "VRML Terrain Model"
Pulication_Place = "Monterey, California"
PublicationDate = "1998"
Creator = "Greg Leaver"
Contributor = "Don Brutzman and Ray McClain"
Originator = "Naval Postgraduate School"
Data_Source = "NOAA Seabeam Survey"
Data_Format = "Surfer DSAA Export"
Datum = "NAD83"
Ellipsoid = "GRS 1980"
UTM_Zone = "10"
North_Bounding_Coordinate_UTM = "4200000 N"
South_Bounding_Coordinate_UTM = "3940000 N"
West_Bounding_Coordinate_UTM = "460000 W"
East_Bounding_Coordinate_UTM = "612000 W"
Northwest_Bounding_Coordinate_Latitude = "N37d56m4"
Southwest_Bounding_Coordinate_Latitude = "N35d36ml"
Northeast_Bounding_Coordinate_Latitude = "N37d56m2"
Southeast_Bovmding_Coordinate_Latitude = "N35d35m5"
Northwest_Bounding_Coordinate_Longitude = "W123d27ml"
Southwest_Bounding_Coordinate_Longitude = "W123d26m2"
Northeast_Bounding_Coordinate_Longitude = "W121d43m3"
Southeast_Bounding_Coordinate_Longitude = "W121d45m4"
maxElevation = "6.50001m"
minElevation = "-3808.92m"
postSpacing = "2000m"

Figure 6.1. Example XML Keys and Key Values Used in Metadata Node.

2. Positioning

A pair of Transform nodes is used to laterally position each tile to its correct

geographic location in the MBNMS. Thus all the tiles for a given resolution can be

positioned to form a mosaic of the bay. Thus three complete mosaics have been

produced, for post-spacing resolutions of 2000,1000, and 500 meters, respectively. Each

33

tile file has a single corresponding Transform node referenced to the local origin of the

UTM coordinate system, which occurs at the northwest corner of the MBNMS. The

topmost linking file has the transform that moves the entire geometry set to the proper

UTM coordinates of the northwest-corner of the origin, i.e., 4,200,000 meters Northing,

460,000 meters Easting.

3. Navigation Icons

To enable a user to easily navigate the model a Transform node is defined as a

Navigation Icon. This node was constructed by inlining and grouping various shapes.

Anchor nodes are defined within the marker to permit the viewer to select from four

different viewpoint orientations from the perspective ofthat tile: north, south, east, and

west. The icon also uses a WD node to switch between high, medium, low, and zero

detail shapes depending on the viewer's perspective to the marker. Additionally, the icon

provides information about the location it corresponds to by specifying the position in

UTM coordinates. An example icon is shown in Figure 6.2. VRML code for the icon

appears in file N353610.W1232629.070.051.1000.seabeam.wri in Appendix E.

34

Figure 6.2. A Navigation Icon.

4. Elevation Grids

Each VRML tile has an ElevationGrid node, which simulates the topographical

features of the geographical region covered by the gridded data file. An example

elevation grid is shown in Figure 6.3. Example code appears in file

N353610.W1232629.070.051.1000.seabeam.wrl in Appendix E.

Figure 6.3. A Single Elevation Grid (File N353610.W1232629.070.051.1000.seabeam.wri)

35

5. Textures

Each VRML tile has a corresponding JPEG image for a texture. The textures

were generated by MLML (McClain, 98) along with the gridded data files. Each image's

area corresponds precisely with the area covered by the grids and follows the file-naming

convention. Example code appears in file.

N353610.W1232629.070.051.1000.seabeam.wrl 1 in Appendix E. These particular

textures use a false-coloring technique that maps depth to pixel color. Alternate texture

images might easily be substituted. This is an important area for future work.

C. TERRAIN TREES

Terrain trees contain the framework for switching between a low-resolution

parent tile and four higher-resolution children tiles. These files do the mechanical work

of switching but contain no constructs to create scenery. Appendixes H and I are an

example terrain tree and scene graph, respectively, for file

N353610.W1232629.070.051.1000.seabeam.wri. Terrain tile constructs are explained

below.

1. Switching

To switch between different tile resolutions, the EXTERNPROTO QuadLOD

node (Reddy, 98) is employed. A detailed description of the QuadLOD node is beyond

the scope of this thesis, but a general overview is provided here. In short, Reddy's node

uses a location-to-camera proximity sensor to control the switching between a parent tile

and four (quad) children tiles. Additionally, the quad is not fetched until the proximity

sensor fires, conserving bandwidth. Also, tiles not within a certain bounding box are not

drawn, improving browser-rendering speed. File caching and release has also been added

36

to improve performance. For these reasons, the QuadLOD node was chosen to form the

basis for the QuadSwapTile switching methodology that the MBNMS model depends

upon. The values used to control the QuadLOD node's proximity sensor are shown in

Table 6.1. These values are implemented by invoking the QuadLOD node as shown in

the code excerpt in Figure 6.5, and also appear in Appendix H in file

N353610.W1232629.070.051.1000.tree.wri.

feibluttor^^
to'High -
(Low/High; reversible)

2,000m/1000m

1,000m/500m

i^ximirxrSensor^bx;Sizer
(Switch-Values) '

X

152,000m'

76,000m

Y

100,000m

50,000m

260,000m

130,000m
Table 6.1 QuadLOD Node Proximity Sensor Values

QuadLOD {
parentUrl"1000m/Tiles/N3 53610.W 1232629.070.051.1000.seabeam.wri"
childlUrl"500m/Tiles/N353610.W1232629.035.025.0500.seabeam.wrl"
child2Url "500m/Tiles/N353613.W1230119.035.025.0500.seabeam.wri"
child3Url "500m/Tiles/N361123.W1230120.035.025.0500.seabeam.wri"
child4Url "500m/Tiles/N361120.W1232641.035.025.0500.seabeam.wri"
parentCenter 38000 0 195000
parentSize 76000 10000 130000
switchSize 76000 50000 130000

}

Figure 6.4 QuadLOD Excerpt (File N353610.W1232629.070.051.1000.tree.wri)

2. Viewpoints

Viewpoint nodes are located in the top-level tree. Viewpoints are defined and

named to correspond to uniform resource locations (url) specified in Anchor nodes

embedded in the Navigation Icons described in the Terrain Tiles section, above.

Although four viewpoints correspond to each tile, the syntax for the viewpoints is not

located in the tiles or the individual trees. Instead all viewpoint nodes are located in the

37

top-level 2000m terrain tree file, (i.e., file mbnms.wrl). This is because in order to

maintain the switching integrity of the nested trees, the top-level file must always be

specified as the url in the browser's netsite window.

D. SUMMARY

This chapter explains the structure of the VRML files that make up the MBNMS

Terrain Model. The terrain tiles are gridded adjacent scenes that contain VRML

constructs to enable navigation, tile translation, and elevation grid and texture rendering.

The terrain trees provide the mechanism needed to switch between levels of detail. The

top-level tree contains viewpoints, while the Navigation Icons point to those viewpoints.

38

VII. EXPERIMENTAL RESULTS

A. INTRODUCTION

This chapter presents results obtained in the implementation of the terrain model.

It takes a look at the structure of the database and the size of the datasets. Next, the

performance of the model is measured by timing how long it takes to render resolutions

on two different machines. A section on user access and navigation provides the web

address and user information on how the model can be accessed and navigated. The final

section discusses how the model is georeferenced with the UTM coordinate system and

shows how a user can add content to the MBNMS scene by taking advantage of this

georeferencing.

B. MONTEREY BAY TERRAIN MODEL DATABASE

The directory structure of the model is illustrated in Figure 7.1.

[MBIMIVIS Terrain Model]

| 2000m 1 ■* «-**■» *-k _~~. 1
1 | ■ W1 |

"Tiles "Trees Tiles Trees

Images XML Images XML

Grids Grids

I Icons 1 ^nrti 1 1 I OUU 1

"Tiles Images

XML /—>■ —:^~in v^> ■ ■ uo

Figure 7.1. Directory Structure of MBNMS Terrain Model Database

39

Table 7.1 gives the detailed characteristics of terrain tiles, by resolution

(subdirectory) while Table 7.2 gives the detailed characteristics for the terrain trees, again

by resolution. The directory structure of the images.and XML datasets mirror that of the

terrain tiles dataset.

p^io|]ffiÖ|!S|8ffiMp}^|
':}ffit::M -::aaoft Tiles:
'fSpacmgK

2000m

1000m

500m

Tile Area: Ippal Area

16

| Range ofi
.individual

Cumulative;;
LlEile:Size;ät]

3,952,000 km2

9,880,000 km2

2,470,000 km2

[FüeSizesl m&t^^0-
"(TTiIes)W- äfResblu'ÖQri??;

3,952,000 km2

3,952,000 km2

3,952,000 km2

60 KB

51-67 KB

51-67KB

Total Cumulative Size of Tile
Datasets

60 KB

239 KB

959 KB

1258 KB

Table 7.1. Terrain Tile Dataset Characteristics

Resplutionr
(Post

Spacing) ;

Trees Parent Tiles ChUdÄTUeS; Rangeofi,
,^In|iividual$
', File Sizes

(Trees)

^^inulätive
FileSizeat

This :
Resolution'

2000m 1 1
/ 4

17 KB 17KB

1000m 4 4 ^ 16 2 KB 8KB

Total Cumulative Size of
Tree Datasets

25 KB

Table 7.2. Terrain Tree Dataset Characteristics

C. PERFORMANCE RESULTS AND USABILITY TESTING

Currently, the MBNMS Terrain Model can be accessed by any VRML browser.

However, going past the top-level low-resolution (2000m post-spacing) entry file is only

possible using a PC or Macintosh. This is because the model uses Script nodes that

interface with Java class files. Currently, only VRML browsers designed for PCs follow

40

the VRML 97 specification as it pertains to Java in Script nodes (Brutzman, 98).

Therefore, the model currently does not show higher-resolution tiles with Cosmo Player

under IRIX (SGI) because it does not support Java in the Script node. This limitation is

expected to be temporary since all VRML used in the MBNMS model is compliant with

the VRML 97 specification (VRML 97, 97)

1. Performance Aids

a. Vertical Exaggeration.

Even though VRML renders geometry in 3D, it helps to exaggerate the

depth on a 2D screen. Increased vertical relief can accomplish this. The MBNMS

Terrain Model has a vertical exaggeration of one. Figure 7.2 shows how vertical

exaggeration can be applied, albeit at a loss of scale and registration with any other

associated object geometry. Figures 7.3 and 7.4 show example differences in vertical

exaggeration.

Transform {
scale 1 3 1 # applies non-uniform scaling (3:1) along vertical-axis (depth)
children Inline {url "N353610.W1232629.070.051.1000.seabeam.wri" }

}

Figure 7.2 Applying Vertical Exaggeration

Figure 7.3. 3:1 Scaling Example (FileN353611.W1223609.070.051.1000.seabeam.wri)

41

Figure 7.4. 1:1 Scaling Example (File N35361 l.W1223609.070.051.1000.seabeam.wri)

b. Reducing File Size by Rounding

File size of terrain tiles is reduced by 30 - 40 % by using integers for

bathymetric depth values rather that floating point numbers. In an oceanic environment

with depths in thousands of meters, 0.5 meters of error due to integer rounding is an

acceptable figure considering the payback in download and rendering speed that results

from substantially smaller files. Since maximum resolution of the underlying smoothed

dataset ranges from 5m to 10m. this is a safe assumption.

2. Performance Results

The MBNMS contains three levels of resolutions, 2000m, 1000m. and 500m.

Table 7.3 shows the rendering performance on two different machines, with time as the

performance measure. Time is measured from the moment a proximity sensor is tripped

from one resolution (to load the next resolution) until the next resolution is drawn on the

screen. Measurements are for the exchange of one parent tile for four children tiles and

are not cumulative. On slower processors, or those without 3D-graphics hardware

acceleration, the model renders reasonably quickly at the 2000m and 1000m resolutions.

42

But on these platforms the 500m resolution tiles are slow to render. Performance was

relatively unaffected by whether or the copy was on a local machine or fetched over a

network. Much further user testing and optimization is possible. Future implementation

of SwapTile and QuadTile mechanisms as described in Chapter IV can likely provide

good speedups across all platforms. Nevertheless, we believe that the current approach

already provides excellent scalability, since high-resolution files need only be retrieved in

close proximity to the viewer.

;:Re^uttonj|-|^^;^;:;. v^
From/ To
(reversible)

24; Jr ^Rendering Time in Seconds

sLocäL Copy^. .* ■"-- ,.-. - Network Copy

* ' V.

. MäcMneWÄ-Si- Machine-I*- -
M33?Mfe '^T

Machine -2.

Entry Level Load - 2000m 40s 73s 18s

2,000m/1000m 52s 186s 87s

1,000m/500m 65s 143s 112s
Table 7.3. Rendering Time for Resolutions

D. USER ACCESS AND NAVIGATION

The MBNMS Terrain Model is available over the Web at http://

www, stl. nps. navy. mil/~auv/leaver/MBNMSterrain/2000m/Trees/mbnms. wrl. The model is

compatible with Cosmo Player (minimum version 2.1). The entry-level viewpoint

presents the top-level scene shown in Figure 7.5.

* 28.8 Kilobits per second Modem Connection
* Dedicated Internet Connection

43

^Netscape

file £dl View Go Communicator Heb
PIP 13

M
; 3 1 A- ^ ci rf i

: ij Reload Home Search Guide Print Security

,Jf " Bookmarks Jj. Go to: Ihttp://www.stlnps.nav>.mil/~auv/leaver/MBNMSterrain/2000m/Trees/mbnms.wrl

Monlerev Bav National Marine Sanctuary

N —w<— s

d

.lä". {Netscape

Figure 7.5. Entry Viewpoint of MBNMS Terrain Model
gi3 v£

A navigation icon is positioned at the center of the tile in the screen foreground.

Navigation icons are switched in and out together with corresponding terrain tiles. Each

tile has a unique navigation icon that provides four relative viewpoints. The initial top-

level scene is at the widest possible resolution (2000 m). The viewer can determine this

by positioning the mouse over any of the navigation icon's four compass headings. This

causes the current level of resolution (that the navigation icon is at) to be displayed I at

the bottom of the browser's window. By clicking on an icon direction label a viewpoint

can be selected. Selecting the viewpoint causes the viewers position to change to the

direction of the compass heading chosen, at a perspective just above the navigation icon.

Navigation icons are positioned at a tile's center on the boundary of the proximity sensor

that controls the switch between resolutions. That is, if the viewer flys beneath or drops

44

w Netscape

Eile Ed* View Go Communicator Help

Reload Home Search Guide Print Security

,.£ Bookmarks ..# Go to;|http7ywww.5tl.np5.navv.mil^~auv/leaver/MBNMStefrain/2000m/Trees^mbnms.wrl

Monterey Bay National Marine Sanctuary
I'CTOUti N

ma
ml

,g? Netscape ^ -»i. ;".?Js» sis-' ••<?.

Figure 7.5. Entry Viewpoint of MBNMS Terrain Model

A navigation icon is positioned at the center of the tile in the screen foreground.

Navigation icons are switched in and out together with corresponding terrain tiles. Each

tile has a unique navigation icon that provides four relative viewpoints. The initial top-

level scene is at the widest possible resolution (2000 m). The viewer can determine this

by positioning the mouse over any of the navigation icon's four compass headings. This

causes the current level of resolution (that the navigation icon is at) to be displayed I at

the bottom of the browser's window. By clicking on an icon direction label a viewpoint

can be selected. Selecting the viewpoint causes the viewers position to change to the

direction of the compass heading chosen, at a perspective just above the navigation icon.

Navigation icons are positioned at a tile's center on the boundary of the proximity sensor

that controls the switch between resolutions. That is, if the viewer flys beneath or drops

44

below a navigation icon, the next resolution for that tile will be switched in. Thus, a low-

resolution tile (and the tile's navigation icon) is replaced with four higher resolution tiles

(and their corresponding navigation icons). An icon can be made to disappear by

clicking on its sphere. Icons which have been made to disappear can be restored by

zooming out to a lower-resolution level and then zooming back in to reload the higher-

resolution level. The icons and switching occurs at the values shown in Table 7.3.

Resolution Switching E\ent
(Reversible)

;Switch,Valu.e .'<"-■' ,,«- '<<,
(Icon; Elevation) ,„ ~

2000m to 1000m 50,000m

1000m to 500m 25,000m
Table 7. 4 Tile Switching Values (depth)

E. EXAMPLE INTEGRATION OF CONTENT

1. Georeferencing

The MBNMS Terrain Model's coordinate system is georeferenced to the UTM

coordinate system. The model is built with the VRML coordinate system origin (the

point 0,0,0 of the root node) corresponding to the baseline position of Zone 10 of the

UTM coordinate system, i.e., 0 m North, 0 m East of Zone 10. The northwest corner of

the real MBNMS is located at 4,200,000 m north and 460,000 m east (in UTM,

4,200,000N, 460,000E) of the zone 10 baseline. In VRML, the Terrain Model is

designed so that North is in the positive x direction, and East is in the positive z

direction. So, the northwest corner of the Terrain Model is located 4,200,000 units in the

positive x direction, and 460,000 units in the positive z direction. Thus, in the x-z plane,

the coordinates of the Terrain Model correspond to the real life sanctuary in terms of the

45

UTM coordinate system. The y-axis represents depth. Figure 7. 6 represents these

relationships.

+ y
Elevation

Object:
x = 4,005,000

-y = depth
z = 536,000
Northing = 4,005,000m
Easting = 536,000m
Depth = bathymetric point

NW Corner of MBNMS:
x = 4,200,000
-y = depth
z = 460,000
Northing = 4,200,000m
Easting = 460,000m
Depth = bathymetric point

Figure 7.6. Georeferencing VRML and UTM Coordinate Systems

It is worth noting that this two-stage approach to georeferencing was further necessary

because VRML 97 does not support double floating-point precision. Establishing two-

step floating-point coordinate conventions, or providing double-precision support are

important areas of effort for the GeoVRML Working Group.

2. Adding Content

Since the MBNMS Terrain Model is georeferenced with the UTM coordinate

system, adding content to a VRML scene in context with its proper location in the real

MBNMS requires just a few simple VRML statements. As Figure 7.7 shows, content can

be added in context with the MBNMS that might be at the location of 4005000 Northing

and 536000 Easting (i.e., N36dllm20s latitude, W122d35m58s longitude).

46

F. SUMMARY

This chapter describes the detailed VRML construction of the MBNMS database

and also examines the structure and the size of the datasets. A section on performance

measures how long it takes for the model to render on two different machines. Also, a

section on user access and navigation provides the web address to enable a user access

the model and information on how the model can be navigated. Finally, by

georeferencing the model with the UTM coordinate system, an example is provided to

show the user how content to the MBNMS scene can be added.

47

48

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. RESEARCH CONCLUSIONS

The VRML terrain model of the Monterey Bay National Marine Sanctuary

consists of numerous terrain tiles, terrain trees, and jpg images to support three levels of

topographic resolution. Different VRML mechanisms for switching between resolutions

have been considered, with the QuadLOD selected as the primary mechanism of choice.

Relevant findings on issues regarding VRML creation, viewpoints, rendering, and

georeferencing with content are amplified below.

1. Generating VRML Syntax

To build the MBNMS model, preprocessed bathymetric data files are imported by

a Java program which positions the terrain tiles and terrain trees and exports VRML

syntax. A prerequisite effort was access to a large GIS database engine (MLML, 98).

This approach proved to be an effective method of creating VRML files for a large-scale

virtual environment.

2. Viewpoints

Extensive experimental efforts to embed native VRML viewpoints in the

individual tiles failed, for two reasons: self-describing viewpoint names are too long, and

viewpoints continued to accumulate far past any usable number.

The current model uses a navigation icon to select viewpoints and to mark

locations in the VRML world that correspond to real-life locations (e.g., the center of

each tile). One of the benefits of using navigation icons is that they can be inlined with

the tile geometry. This allows them to be switched in and out with terrain tiles;

automatically culling unneeded icons from view along with the icon's corresponding

49

terrain tile. Another benefit is that four viewpoints are attached to the icon to enable easy

viewer navigation of the model. The viewpoint nodes, while defined in the top-level

scene, are pointed to from navigation icons that are located in the terrain tiles.

The viewpoint nodes in the top-level scene contain empty description fields. If

the description field is empty, viewpoints aren't listed in the browser window.

Ordinarily, viewpoint descriptions are listed, but with the QuadLOD switching scheme

utilized by the model, four viewpoints would be listed each time a tile is switched in.

Unfortunately, the viewpoint list is not culled when tiles are dropped from view or

switched out, causing the viewpoint menu to be quickly overloaded. The navigation icon

method solves this problem since the empty description field in the viewpoint node

prevents the viewpoints from ever appearing in the viewpoint menu. It also frees up the

viewpoint menu for an author's content-related use.

3. Rendering

The MBNMS contains three levels of resolutions: 2000m, 1000m,and 500. On

slower processors, or those without hardware acceleration, the model renders reasonably

quickly at the 2,000m and 1,000m resolutions (one or two frames per second). But, on

these platforms, the 500m resolution is slow to render. This does not seem to be related

to file size of the terrain tiles or file download delays, but instead seems to be a result of

too many polygons in the scene. The QuadLOD node does cull tiles that are not visible,

so it seems the problem lies with too-high resolution tiles in the scene, given the area

covered by the scene. In other words, there are too few resolution steps nested in the tree

hierarchy. This probably might be further diagnosed and solved by starting with a lower-

50

resolution top-level scene than the 2000m spacing used, such as 4000 m spacing.

Resolution can then be increased again by a factor of two each time.

4. Georeferencing and Content

The MBNMS Terrain Model, built in the VRML coordinate system, is

georeferenced to the real sanctuary when mapped in a UTM system. By aligning the

model to the UTM coordinate system, users are able to place content in context with a

terrain environment. A few simple VRML statements added to the user's scenes are all

that's necessary to integrate geometry. However, this content is most likely at a depth

encapsulated by a high-resolution proximity sensor. As a result, if a user attempts to get

close to the object to view it in detail, the sensor will trigger, and as mentioned above,

this high resolution scenery is slow to render on some machines, making accessibility to

the object problematic.

B. RECOMMENDATIONS FOR FUTURE MBNMS TERRAIN MODEL

WORK

1. Normal Vectors to Eliminate Tile Seams

When a quad of higher resolution child tiles replaces a lower resolution parent tile

seams between the quad of tiles are sometimes noticeable. Although this is expected

when tiles of different resolutions abut one another, the seams occur even within the

quad. These tiles - and neighboring tiles of the same resolution - are in fact coplanar

because they were designed to have the same elevation points at the seams. The problem

is that normals 6 (normal vectors) for the two adjoining tile's edges are computed

differently and so the edges are shaded differently. This occurs because while the edge

6 Unless explicity specified, normals are computed by the browser. Normals are like arrows pointing
straight out from a face or an edge, and determine shading.

51

for one tile might face the viewer, the edge for its neighbor might be facing away from

the viewer. Since each tile has no information about the other, the normals are computed

independently. To resolve this inconsistency, normals can be preprocessed and explicitly

included in the node's geometry for a scene. Explicitly specifying normals might also aid

in rendering speed, as it relieves the browser from the computational effort during initial

rendering. However, it will increase download time. Note that normals also have a

visible effect if texture imagery is included. A possible optimization for the next-

generation VRML specification is to allow definition solely for normals of the edge

vertices, allowing browsers to calculate internal normals.

2. Modified QuadLOD Node

The QuadLOD Node is a remarkable node - an efficient algorithm for switching

tiles that the MBNMS Terrain Model must have for proper operation. However, one

drawback from employing the current node is that when a viewer exits and re-enters the

node's proximity sensor box, the node reloads tiles already in memory. This causes

delays in rendering and another fetch for four tiles - whether they are local or over the

network. Browsers don't seem to be smart enough to yet know the difference, so a

solution might be a smarter QuadLOD node that turns off its proximity sensor when the

viewer exits the sensor's box. Such an approach could be coded using static (persistent)

classes. This would prevent the quad from being reloaded, and would allow a developer

to include descriptive viewpoints with the tiles that would not be redundantly loaded and

cumulatively bound to the scene. A separate drawback to using the QuadLOD node is

that it binds all geometry to the top-level node. For example, to include content in the

MBNMS, the content must be inlined or nested with the file containing the top-level

•52

QuadLOD node. This author was unsuccessful in finding a way to do the reverse - i.e.,

inlining the MBNMS file containing the QuadLOD node with the content. This is a high

priority shortcoming which needs correction.

3. Navigation Icons to Control Other Transitions

This thesis discusses three types of switching. The first is the QuadSwapTile

method implemented by the QuadLOD node to perform switches automatically. The

other two (SwapTile and QuadTile) might be good ways for a user to decompose the

combined functionality of the QuadLOD node by allowing a user to either break a parent

tile into four children, or to simply trade a low resolution tile for a high resolution tile. If

the user might control transitions between these two alternatives, perhaps by using a

control panel attached to the navigation icon that was brought in and out with the tile, the

user might navigate and transition more easily to the desired resolution. It would also be

more efficient since the QuadTile switch might let a user continually segment a low-

resolution tile until the destination is approached and the desired locale needs to be

"blown up" to a higher-resolution tile. At this time a SwapTile transition could complete

the transitions to high-resolution local small-area tiles, saving all the download and

rendering overhead that comes with the middle resolutions in the nested hierarchy

approach. Either or both transition triggers might be attached sensors or anchors on the

navigation icon already available for user selection. A triggered QuadLOD node could

be used for the QuadTile transition, while the Visibliiylnline node (Reddy, 98) could

might be employed to switch tiles in the SwapTile transition.

53

4. Return of the Navigation Icons

Currently, a viewer can cause navigation icons to disappear by clicking on a

certain part of them. They disappear by scaling to near zero. The problem with this

approach is that the viewer can't get them back unless the tile that contains them is

reloaded. To offer a means of retrieving them, it might be better instead for them to

become nearly transparent upon user selection rather than to scale down, so that the icons

are still visible (barely) in the scene. The problem with putting a control panel elsewhere

(out of the immediate scene) is that the current scene and its geometry will be disrupted

as QuadLOD node proximity sensors are tripped and new geometry is loaded when

moving to the viewpoint.

5. Other MBNMS Model Future Work

Because the maximum resolution of the underlying smoothed dataset ranges from

five meters to 10m, it is possible to construct higher-resolution gridded datasets than the

2000m, 1000m, and 500m datasets generated for this project. Future work includes

generating higher-resolution datasets from which terrain tiles with post-spacings of 250m

and 125m tiles can be created. Even higher resolution terrain tiles might be developed as

well.

Additional work is also needed to provide functionality for the Metadata node as

applied in the MBNMS Terrain Model and to improve metadata interoperability.

C. OTHER LSVE FUTURE WORK

With the amount of digital elevation data available it may soon be possible to map

the United States as a VRML LSVE. Future work includes an automated mapping of the

entire DEM database to produce a VRML model of the continental United States.

54

Another item ripe for future efforts is the development or evaluation of tools for

converting latitude/longitude coordinates into UTM. Still more possibilities exist in

developing conventions for texture mapping, especially autogenerated textures. Finally,

future work includes establishing SEDRIS interoperability with VRML terrain models.

We forsee the day when georeferenced terrain is an expected context for all real-world

3D scenes on the Web.

55

56

APPENDIX A: SCRIPTS USED TO GRID DATA SETS

Surfer Script 1:

* makegrid.bas *
* Grids a bathyraetric data set *
* Runs under the Surfer environment *
* Programmer: Ray McClain *
* Created: 6/98 *

i ***** initialize input and output data files *****
DataFile$=InputBox$("Enter the data file name","Make
Grid","C:\public\vrml\batch")
OutPath$="c:\public\vrml\batch\oututm.grd"

i ***** initialize Windows app variables *****
Set Surf=CreateObject("Surfer.App")

i ***** initialize process variables *****
Method=l

i ***** Grid the data *****
if
Surf.GridData(DataFile$,GridMethod=l,xSize=250,ySize=250 , Out
Grid=OutPath$,OutFmt=2)=0 then end

57

Surfer Script 2:

* plotgrid.bas *
* Extracts tiles from a grid file *
* Runs under the Surfer environment *
* Programmer: Ray McClain *
* Created: 7/98 *

print
print

i ***** initialize the external files *****
InDataFile$="C:\public\vrml\rev250.grd"
DataFile$=InputBox$("Enter the data file name","Ray's
Test" , "C:\public\vrml\batch")

i ***** initialize the Windows system variables *****
Set Surf=CreateObject("Surfer.App")

i ****** initialize the loop variables *****
FirstRow=l
LastRow=131
fn = 1

i ***** Extract tiles by rows and columns *****
for rows=l to 8

FirstCol=l
LastCol=77

for cols= 1 to 8

i ***** Create tile filename *****
fn$=ltrim$(str$(fn))
OutPath$=DataFile$+"\"+fn$+"ray250"

print OutPath$
print "FirstCol = ", FirstCol
print "LastCol = ", LastCol
print "FirstRow = ", FirstRow
print "LastRow = ", LastRow

i ***** Extract the tile *****

58

if
Surf.GridExtract(InGrid=InDataFile$, rl=FirstRow,cl=FirstCol,
r2=LastRow,c2=LastCol,0utGrid=0utPath$,0utFmt=2)=0 then end

FirstCol=LastCol
LastCol=LastCol+76

fn = fn +1
next

FirstRow=LastRow
LastRow=LastRow+13 0

next

59

60

APPENDIX B: SCRIPT USED TO PARTITION DATA SETS

TNTMips Script:

* 112utm.sml *
* Converts bathymetry from Lat/Lon to UTM *
* Runs under TNTMips SML environment *
* Programmer: Ray McClain *
* Created: 5/98 *

clear ()

***** open external files *****
f = fopen("c:/public/vrml/sbll.asc","r")
g = fopen("c:/public/vrml/sbutm.dat" , "w")

***** Select georeference parameters for source data *****
print("Choose the source parameters.")
source = GeorefGetParms ().

print ()
print()

***** select georeference parameters for output data *****
print("Choose the destination parameters.")
dest = GeorefGetParms()

print () ; print ()

***** initialize loop variables *****
a = 0
totalcount = 1
count1 = 1

***** Process until end-of-file *****
while(a==0) begin

***** Read input data file *****
depth = fgetnum(f)
lat= fgetnum(f)
lon= fgetnum(f)

61

***** Convert Lat/Lon to UTM
GeorefTrans(source,Ion,lat,dest,east,north)

***** write UTM values to output file *****
fprintf(g,"%10.6f %10.6f %7.2f\n",north,east,depth)

***** update the process status bar *****
count1 = count1+1
if(countl == 10000) then begin
printf(".")
countl = 1
end #if(countl == 50

***** Test for end-of-file *****
a = feof(f)

totalcount = totalcount +1
end #while(a==0

***** print processing summary *****
print() ;print 0
print("Total points converted = ",totalcount)
print () ; print ()
print("***** Conversion Process Completed *****")

***** close external files *****
close(f)

close(g)

62

APPENDIX C: CREATEVRMLTILE JAVA PROGRAM

//
**

//
// Script Name: CreatelOOOmVRMLTile. java
//
// Description: Create a VRML terrain tile at 1000m post-spacing
resolution
//
// Author: R. Greg Leaver
// Advisor: Don Brutzman
II
II Revised: 1 September 98
//
// Notes: Need one class for each post-spacing
//
//
**

//
**

import java.io.*;
import java.math.*;
public class createlOOOmVRMLtile {

public static void main (String argv []) throws IOException {
FilelnputStream dataSetFile = new FilelnputStream

("1000mGridSet.txt");
StreamTokenizer dataSetTokens = new StreamTokenizer

(dataSetFile);
String gridName;

// Create output stream to write viewpoints to file;
FileOutputStream viewpointOutputFile = new FileOutputStream

("10 OOmViewpoints.txt");
PrintStream viewpointOutput = new PrintStream

(viewpointOutputFile);

// Create output stream to write center of tile values to file;
FileOutputStream vrmlTreeOutputFile = new FileOutputStream

("100 OmParentCenters.txt");
PrintStream vrmlTreeOutput = new PrintStream

(vrmlTreeOutputFile);

// Set postspacing and number of tiles:
int postSpacing = 1000;
int numberTiles = 4;

// Determine tile grid side for use in translation field of Transform
node:

int sideTiles = (int) Math.sqrt (numberTiles);

63

dataSetTokens.quoteChar((int));

// Initialize translation and dimension values:
int lastzDimension [] = new int [sideTiles] ;
int lastzTransform [] = new int [sideTiles];
for (int i = 0; i <= (sideTiles-1); i++) {

lastzDimension [i] = 1;

}
int

lastzTransform [i] = 0;

lastxDimension = 1;
int lastxTransform = 0;
int xCounter, zCounter;
int xDimension = 0
int xTransform = 0
int zTransform = 0
int zDimension = 0

// Loop for setting z translation value:
for (zCounter = 1; zCounter <= sideTiles; ++ zCounter) {

// Loop for setting x translation value:
for (xCounter = 1; xCounter <= sideTiles; ++ xCounter) {
dataSetTokens.nextToken ();

// Get data file names one at a time:
gridName = dataSetTokens.sval;

// Pass data file name to input stream:
FilelnputStream datalnputFile = new FilelnputStream (gridName);
StreamTokenizer datalnputTokens = new StreamTokenizer

(datalnputFile);

// Variables for data input:
double minDepth, maxDepth, lowerUTMN, upperUTMN, leftUTME,

rightUTME,
centerUTMN, centerUTME;
String fileName, viewpointName,
uleftLong, uleftLat, urightLong, urightLat,
lleftLong, lleftLat, IrightLong, IrightLat,
uleftUTMN, uleftUTME, urightUTMN, urightUTME,
lleftUTMN, lleftUTME, IrightUTMN, IrightUTME,
northing, easting;

// Set parser flag to # and begin parsing data file:
datalnputTokens.quoteChar((int) '#');
datalnputTokens.nextToken();
datalnputTokens.nextToken();
fileName = (String)datalnputTokens.sval.substring(l,42);
datalnputTokens.nextToken()
datalnputTokens.nextToken()
datalnputTokens.nextToken()

64

dataInputTokens.nextToken(); uleftLat =
(String)datalnputTokens.sval.substring(1,9);

dataInputTokens.nextToken(); uleftLong =
(String)datalnputTokens.sval.substring(1,10);

datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken(); urightLat =

(String)datalnputTokens.sval.substring(1,9);
datalnputTokens.nextToken(); urightLong =

(String)datalnputTokens.sval.substring(1,10);
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken(); lleftLat =

(String)datalnputTokens.sval.substring(1, 9);
datalnputTokens.nextToken(); lleftLong =

(String)datalnputTokens.sval.substring(1,10);
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken(); IrightLat =

(String)datalnputTokens.sval.substring(1,9);
datalnputTokens.nextToken(); IrightLong =

(String)datalnputTokens.sval.substring(1,10);
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens. nextToken () ; ulef tUTMN =

(String)datalnputTokens.sval.substring(1,8);
datalnputTokens.nextToken(); uleftUTME =

(String)datalnputTokens.sval.substring(2,8);
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken(); urightUTMN =

(String)datalnputTokens.sval.substring(1,8);
datalnputTokens.nextToken(); urightUTME =

(String)datalnputTokens.sval.substring(2,8);
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken(); lleftUTMN =

(String)datalnputTokens.sval.substring(1,8);
datalnputTokens.nextToken(); lleftUTME =

(String)datalnputTokens.sval.substring(2,8);
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken(); IrightUTMN =

(String)datalnputTokens.sval.substring(1,8);
datalnputTokens.nextToken(); lrightUTME =

(String)datalnputTokens.sval.substring(2,8);
da talnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken();
datalnputTokens.nextToken();

65

datalnputTokens.nextToken();
datalnputTokens.nextToken();

// Unset parser flag:
datalnputTokens.ordinaryChar(
datalnputTokens.nextToken(
datalnputTokens.nextToken(

(int)datalnputTokens.nval;
datalnputTokens.nextToken(

(int)datalnputTokens.nval;
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(
datalnputTokens.nextToken(

(int) '#');

--■Dimension

zDimension

leftUTME = datalnputTokens.nval;
rightUTME = datalnputTokens.nval;

upperUTMN = datalnputTokens.nval;

lowerUTMN = datalnputTokens.nval;

minDepth = datalnputTokens.nval;
maxDepth = datalnputTokens.nval;

// Compute center UTM values:
centerUTMN = (1000000)*((upperUTMN + lowerUTMN)/2);
centerUTME = (leftUTME + rightUTME)/2;
northing = String.valueOf(centerUTMN).substring(0,7);
easting = String.valueOf(centerUTME).substring (0,6);

// Read data and construct initial array from Surfer program export:
int i, j;
int vrmlArray [] [] = new int [zDimension+1] [xDimension+1] ;
for (i = 0; i <= (zDimension -1); i++) {

for (j =0; j <= (xDimension-1); j++) {
datalnputTokens.nextToken();
vrmlArray [i] tj] = (int)datalnputTokens.nval;

}
}

// Construct values to geographically translate the tile:
xTransform = postSpacing * (lastxDimension - 1) +

lastxTransform;
zTransform = postSpacing * (lastzDimension [xCounter - 1] -1) +

lastzTransform [xCounter - 1];
datalnputFile.close();

// Compute center of tile for use in creating tree and export to file:
int xtreeTranslation = xTransform + (postSpacing*(xDimension-

1)/2) ;

66

int ztreeTranslation = zTransf orm + (postSpacing* (zDimension-
l)/2);

vrmlTreeOutput.printin("\"" + xtreeTranslation + " 0 " +
ztreeTranslation +"\"");

// Create basis for this tile's named viewpoints:
viewpointName = (gridName. substring (1,7) + "_" +

gridName.substring (9,16) + "_" + gridName.substring(17,20) + "_" +
gridName.substring (21,24) + "_" + gridName.substring(25,29));

// Create output stream to export XML:
String xmlfileName;
xmlfileName = (fileName.substring(0,38) + "xml");
FileOutputStream xmlOutputFile = new FileOutputStream

(xmlfileName) ;
Printstream xmlOutput = new PrintStream (xmlOutputFile);

// Export XML:

xmlOutput.println ("## Title = " + "\"n + "Monterey Bay National
Marine Sanctuary Terrain Model" + "\""),\

xmlOutput. print In ("## Subject = " + "\"" + "VRML Terrain Model"
+ "\"");

xmlOutput.println ("## Publication_Place = " +
H\.in + «Monterey, California" + "\"");

xmlOutput.println ("## Publication_Date = " + "\"" + "1998" +
"\"");

xmlOutput.printIn ("## Creator = " + "\"" + "Greg Leaver" +
.,\.,i.) .

xmlOutput. print In ("## Contributor = " + "\"" + "Don Brutzman
and Ray McClain" + "\"");

xmlOutput.println ("## Originator = " + "\"" + "Naval
Postgraduate School" + "\"");

xmlOutput.println ("## Data_Source = " + "\"" + "NOAA Seabeam
Survey" + "\"");

xmlOutput. print In ("## Data_Format = " + "\"" + "Surfer DSAA
Export" + "\"");

xmlOutput.printIn ("## Datum = " + "\"" + "NAD83" + "\"") ;
xmlOutput.println (■•## Ellipsoid = " + "\"" + "GRS 1980" +

"\"");
xmlOutput.println ("## UTM_zone = " + "\"" +

"10" + "\"");
xmlOutput.println ("## North_Bounding_Coordinate_UTM = " + "\""

+ uleftUTMN + "\"");
xmlOutput.println ("## South_Bounding_Coordinate_UTM = " + "\""

+ lleftüTMN + "\"");
xmlOutput. print In ("## West_Bounding_Coordinate_UTM = " + "\""

+ uleftDTME + "\"");
xmlOutput.println ("## East_Bounding_Coordinate_UTM = " + "\""

+ urightUTME + "\"");
xmlOutput. print In ("## Northwest_Bounding_Coordinate_Latitude =

n + n \ ii ii + uleftLat + "\"");
xmlOutput.println ("## Southwest_Bounding_Coordinate_Latitude =

„ + i,\.,,. + HeftLat + "\"");

67

xmlOutput.printin ("## Northeast_Bounding_Coordinate_Latitude =
n + n\iiii + urightLat + "\"") ;

xmlOutput.println ("## Southeast_Bounding_Coordinate_Latitude =
ii + II \ n II + irightLat + "\"");

xmlOutput.println ("## Northwest_Bounding_Coordinate_Longitude =
n + II\II II + uleftLong + "\"");

xmlOutput.println ("## Southwest_Bounding_Coordinate_Longitude =
.. + II \ II i. + HeftLong + "\"");

xmlOutput.println ("## Northeast_Bounding_Coordinate_Longitude =
n + >• \» II + urightLong + "\"");

xmlOutput.println ("## Southeast_Bounding_Coordinate_Longitude =
II + II\nII + lrightLong + "\"");

xmlOutput.println ("## maxDepth = '• + "\"n + maxDepth + "\"");
xmlOutput.println (••## minDepth = " + "\"" + minDepth + "V"');
xmlOutput.println (»## postSpacing = " + "\"" + postSpacing +

xmlOutput.println (" </Tile>");

// Create output stream to export VRML:.
FileOutputStream vrmlOutputFile = new FileOutputStream

(fileName);
PrintStream vrmlOutput = new PrintStream (vrmlOutputFile);

// Export VRML:
vrmlOutput.println ("#VRML V2.0 utf8");
vrmlOutput.println ("# Terrain Tile");
vrmlOutput.println ("# Autogenerated by CreateVRMLTerrain Program

on 9/15/98"); vrmlOutput.println ("#");
vrmlOutput.printIn ("# " + fileName);
vrmlOutput.println ("#");
vrmlOutput.println ("## Based on proposed VRML Metadata

Convention of 9/1/98");
vrmlOutput.println ("## EXTERNPROTO Metadata [");
vrmlOutput.println ("## field MFString xmlurl");
vrmlOutput.println ("## eventIn MFString set_xmlurl");
vrmlOutput.println ("## eventOut MFString xmlurl_changed");
vrmlOutput.println ("## eventin SFString elementID");
vrmlOutput.println ("## eventOut MFString elementIDs");
vrmlOutput.println ("## eventOut SFString tagName");
vrmlOutput.println ("## eventOut MFString attributeNames");
vrmlOutput.println ("## eventOut MFString

attributeValues ") ;
vrmlOutput.println ("## eventOut MFString childElements");
vrmlOutput.println ("## eventOut MFString

childElementTypes");
vrmlOutput.println (»## 3 " + "\"" + "../../metadata.wrl» +

"\"");
vrmlOutput.println ("## DEF Tile Metadata {");
vrmlOutput.println ("## xmlurl [");
vrmlOutput.println ("## " + "V" + "<?xml

version='1.0'?>") ;

68

vrmlOutput.printin ("##
"•>'•);

vrmlOutput.printin
Sanctuary Terrain Model'"

vrmlOutput.println
vrmlOutput.println

'Monterey, California'");
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

McClain»");
vrmlOutput.println

School'") ;
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

uleftOTMN + "'") ;
vrmlOutput.println

lleftUTMN + "'") ;
vrmlOutput.println

uleftUTME + "'") ;
vrmlOutput.println

urightUTME + •" ") ;
vrmlOutput.println

•" + uleftLat + " • ") ;
vrmlOutput.println

'" + lieftLat + " ' ") ;
vrmlOutput.println

•" + urightLat + "•") ;
vrmlOutput.println

•" + IrightLat + "'") ;
vrmlOutput.println

•" + uleftLong + "'");
vrmlOutput.println

•" + lleftLong + ,"") ;
vrmlOutput.println

•" + urightLong + " ' ") ;
vrmlOutput.println

•" + IrightLong + "'");
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

"../" + xmlfileName +»\»»
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

<Tile ID = '" + fileName +

"## Title = 'Monterey Bay National Marine

"## Subject = 'VRML Terrain Model'");
"## Publication_Place =

"## Publication_Date = '1998'");
"## Creator = 'Greg Leaver'");
"## Contributor = 'Don Brutzman and Ray

"## Originator = 'Naval Postgraduate

"## Data_Source = 'NOAA Seabeam Survey'");
"## Data_Format = 'Surfer DSAA Export'");
"## Datum = 'NAD83'");
"## Ellipsoid = »GRS 80'");
"## UTM_zone = '10'");
"## North_Bounding_Coordinate_UTM = '" +

"## South_Bounding_Coordinate_UTM = ' " +

"## West_Bounding_Coordinate_UTM = '" +

"## East_Bounding_Coordinate_UTM = '" +

"## Northwest_Bounding_Coordinate_Latitude =

"## Southwest_Bounding_Coordinate_Latitude =

"## Northeast_Bounding_Coordinate_Latitude =

"## Southeast_Bounding_Coordinate_Latitude =

"## Northwest_Bounding_Coordinate_Longitude

"## Southwest_Bounding_Coordinate_Longitude

"## Northeast_Bounding_Coordinate_Longitude

"## Southeast_Bounding_Coordinate_Longitude

"## maxDepth = '" + maxDepth + •"");
"## minDepth = '" + minDepth + "'");
"## postSpacing = '" + postSpacing + "'");
"## </Tile>" + "\"" + ", " + "\"" +

"##]");
"## }");
"Group {");
"children [");
" Transform { ");

69

vrmlOutput.printin (" translation " + xTransform + " 0 " +
zTransform);

vrmlOutput.println (" children [");

DEF NavigationMarker Transform {"
// Construct Navigation Marker:

vrmlOutput.printIn ("

);
vrmlOutput.println (" bboxSize 25 25 25 ") ;
vrmlOutput.println (" translation " +

(postSpacing*(xDimension-l)/2) + " " + "25000" + " " +
(postSpacing*(zDimension-1) /2)) ;

vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.printIn ("
vrmlOutput.printIn ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("

scale 400 400 400 ");
children [") ;

LOD { ");
range [200, 400, 600] ") ;
level [") ;

Group {");
children [");

Anchor { ") ;
description " + "\"" + "click vrmlOutput.println ("

on sphere to remove marker" + "\"");
vrmlOutput. print In (" children Inline { url " +

"\"n + "../../Icons/spherearrows.wri" + "\"" + " }"),-
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("

"../../Icons/sphere.wrl" + "\"" + " }");

} ");
Group { ") ;
children [") ;

DEF SphereMarker TouchSensor { }");
Inline { url " + "\"" +

vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("

viewpointName + "\"");
vrmlOutput.println ("

] ");
} ");

Transform { ");
translation 20 0 0 ") ;
children ");

Anchor { ");
url " + "V" + "#E_" +

description " + "\"" +"East View
from this location " + postSpacing + "m. resolution" +"\"");

")

vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("

vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("

");
vrmlOutput.println ("

{ ");
vrmlOutput.println ("

1.0 ");
vrmlOutput.println ("

0.0 »);

children ") ;
Billboard { ");

axisOfRotation 0 10

children ") ;
Shape { ");

appearance Appearance {

material Material

emissiveColor 1.0 1.0

diffuseColor 0.0 0.0

70

vrmlOutput.printin
vrmlOutput.printin
vrmlOutput.printin
vrmlOutput.printin

"E" + "\"") ;
vrmlOutput.println

FontStyle { ") ;
vrmlOutput.println

+ "\"") ;
vrmlOutput.println

"MIDDLE" +"\"" + "," + "\
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

viewpointName + " \ " ") ;
vrmlOutput.println

from this location
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

");
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

1.0 1.0 ") ;
vrmlOutput.println

0.0 0.0 ") ;
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

} ");
} ");

" geometry Text { ");
" string " + "\"" +

" fontStyle

" style " + "\»"> + "BOLD"

" justify [" + "\"" +
" + "MIDDLE" +«\«" +"]");
" size 8 ");

}");
} ");

}")
}")
}")

} ");
" Transform { ");
" translation 0 0 -20 ") ;
" children ");
" Anchor { ") ;
" url " + "\n" + "#N_" +

" description " + "\"" +"North View
+ postSpacing + "m resolution" + "\"");

children ") ;
Billboard { ");

axisOfRotation 0 10

ii \ " ")

");
vrmlOutput .println

vrmlOutput.println
"BOLD" + «\'"<) ;

vrmlOutput.println
+ "MIDDLE" +"\«« + «," +

vrmlOutput.println
vrmlOutput.println
vrmlOutput .println
vrmlOutput.println

children ");
Shape { ");

appearance Appearance { ");
material Material { ");

emissiveColor 1.0

diffuseColor 0.0

} ");
} «);
geometry Text { ");

string " + "\"" + "N" +

fontStyle FontStyle {

style " + "\"" +

justify [" + "\""
\"" + "MIDDLE" +«\'<« +••]");

} ");
} ");

} ");

size 8 ") ;

71

vrmlOutput.printin ("
vrmlOutput.printIn ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.printIn ("

viewpointName + "\"");
vrmlOutput.println ("

from this location " + postSpacing + "m resolution" + "\"");

} »>;
} »);

} -);
Transform { ") ;
translation 0 0 20 ");
children ");

Anchor { ");
url " + "\"" + "#S_" +

description " + "\"" +"South View

vrmlOutput.printIn ('
vrmlOutput.printIn ("
vrmlOutput.println ("

vrmlOutput.printIn ("
vrmlOutput.println ("
vrmlOutput.println ("

");
vrmlOutput.printIn ("

{ «);
vrmlOutput.printIn ("

1.0 ") ;
vrmlOutput.printIn ("

0.0 ");
vrmlOutput.println ("
vrmlOutput.printIn ("
vrmlOutput.printIn ("
vrmlOutput.println ("

"S" + "\"");
vrmlOutput.printIn ("

");
vrmlOutput.println ("

+ "\"");
vrmlOutput.printIn ("

children ");
Billboard { ");

axisOfRotation 0 10

children ");
Shape { ");

appearance Appearance {

material Material

emissiveColor 1.0 1.0

diffuseColor 0.0 0.0

} ">;
} ");
geometry Text { ") ;

string " + "\"" +

fontstyle FontStyle {

style " + "\"" + "BOLD"

justify t" + "\"" +
"MIDDLE" +"\"" + »," + "\"" + "MIDDLE" +"\"" +"]");

vrmlOutput.println ("
vrmlOutput.printIn ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.printIn ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("
vrmlOutput.println ("

viewpointName + "\"");
vrmlOutput.println ("

from this location " + postSpacing + "m resolution" +"\"n);
vrmlOutput.printIn (" children ");
vrmlOutput.println (» Billboard { ");

size 8 ");
} ");

} «);
} «);
} «);
} «);

} «);
Transform { ");
translation -20 0 0 ");
children ");

Anchor { ");
url " + "\"" + "#W_" +

description " + "\"" + "West View

72

vrmlOutput.printin ("

vrmlOutput.printin
vrmlOutput.printin
vrmlOutput.printin

vrmlOutput.printIn

axisOfRotation 0 10

children ");
Shape { '•) ;

appearance Appearance {

material Material

emissiveColor 1.0 1.0

diffuseColor 0.0 0.0

} »);
} -);
geometry Text { ");

string " + "\"" +

fontStyle

style " + "\"" + "BOLD"

");

");

{ -);
vrmlOutput.println

1.0 "),-
vrmlOutput.println

0.0 ");
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

"W" + "\"«);
vrmlOutput.println

FontStyle { ") ;
vrmlOutput.println

+ "\"");
vrmlOutput.println

"MIDDLE" +"\"" + «,« + "\"
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

");
vrmlOutput.println
vrmlOutput.println

1.0 ");
vrmlOutput.println

0.0 ••);
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

northing + " N" + "\"" + "," + "\"" + easting + " E" + "\"" + "]");
vrmlOutput.println (" fontStyle FontStyle {

");
vrmlOutput.println (" justify [" + "\"»

+ "MIDDLE" +"\"" + »," + "\"« + "MIDDLE" +"\"" +"]«);

" justify t" + "\"" +
" + "MIDDLE" +"\"" +"]");
" size 8 ");

} ");
} ");

} ")
} ")
} ")

} ");
" Transform {");
" translation 0 18 0 ");
" children ");
" Billboard { ") ;
" axisOfRotation 0 1 0 ");
" children ") ;
" Shape { ");
" appearance Appearance {

" material Material { ");
" emissiveColor 1.0 1.0

} »);

diffuseColor 0.0 0.0

} «);
geometry Text { ");
string [" + "\"" +

73

vrmlOutput.printin (" size 6 ");
vrmlOutput.printin (" } »);
vrmlOutput.printin (" } ");
vrmlOutput.printin (" } »);
vrmlOutput.printin (" } ");
vrmlOutput.printIn (" } »>;
vrmlOutput.printin ("] ");
vrmlOutput.printin (" } »);
vrmlOutput.printIn (" Group {");
vrmlOutput.printIn (" children [");
vrmlOutput.printIn (" Anchor { ");
vrmlOutput.printin (" description " + "\"" + "click on

box to remove marker" + " \„") !
vrmlOutput.printin (" children Inline { url " + "\""

+"../../Icons/boxarrows.wrl" + "\"" + " }") ;
vrmlOutput.printin (" } ">;
vrmlOutput.printin (" Group { ");
vrmlOutput.printin (" children [");
vrmlOutput.printin

vrmlOutput.printIn

(" DEF BoxMarker TouchSensor {

(" Inline { url " + "\""
+"/../../Icons/box.wrl" + "V • n + n } ii) .

vrmlOutput.printin {"] ");
vrmlOutput.printin (" } ");
vrmlOutput.printin ("] ");
vrmlOutput.printIn (" } »);
vrmlOutput.printin (" Group { ") ;
vrmlOutput.printin (" children [");
vrmlOutput.printin (" USE BoxMarker ");
vrmlOutput.printin (" Inline { url " + "\"n

+"../../Icons/box.wrl" + ll V ll 1 , + n } n) .

vrmlOutput.printin ("] ");
vrmlOutput.printin (" } ">;
vrmlOutput.printin (" Group { }") ;
vrmlOutput.printin ("] ");
vrmlOutput.printin (" } ");
vrmlOutput.printin ("] ");
vrmlOutput.printIn (" } ");

// Construct Topography:
vrmlOutput.printIn (" DEF Topography Transform {");
vrmlOutput.printin <" scale 1 1 1");
vrmlOutput.printin (" children [");
vrmlOutput.printin (" Shape { ");
vrmlOutput.printin (" appearance Appearance {");
vrmlOutput.printin (" material Material { }");
vrmlOutput.printin (" texture ImageTexture {");
vrmlOutput.printIn (" url " + "\"" + "../Images/" +

gridName.substring(0,38) + " jpg" + "V") ;
vrmlOutput.printIn (" }");
vrmlOutput.printin (" }«);
vrmlOutput.printin (" geometry ElevationGrid {");
vrmlOutput.printin (" xDimension " + xDimension);

74

zDimension " + zDimension)
xSpacing " + postSpacing);
zSpacing " + postSpacing);
solid FALSE");
creaseAngle 0.785");
height [");

(j = 0; j <= (zDimension -1); j++) {
for (i = 0; i <= (xDimension-1); i++) {

vrmlOutput.print (vrmlArray [j] [i] + " ");

}
vrmlOutput.printIn ();

vrmlOutput. println
vrmlOutput. println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
for

("
("
("
("
("
("

}
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

");
vrmlOutput.println
vrmlOutput.println

TimeMarker.set_startTime"
vrmlOutput.println

TimeMarker.set_startTime"
vrmlOutput .println

ScaleMarker.set_fraction"
vrmlOutput.println

}")
]")

}")
]")
}")

{ -) "DEF TimeMarker Timesensor
" cyclelnterval 1.0 ") ;
" loop FALSE ");
" startTime 0.0
" stopTime 1.0

"}, ");
"DEF ScaleMarker Positionlnterpolator { ") ;
" key [0.0 1.0]");
" keyValue [0.01 0.01 0.01, 0.01 0.01 0.01]

")
")

■ROUTE BoxMarker.touchTime TO

' ROUTE SphereMarker.touchTime
r

' ROUTE TimeMarker.fraction_changed
r

•ROUTE ScaleMarker.value_changed

TO

TO

TO
NavigationMarker.set_scale");

// Construct Viewpoint looking North:
viewpointOutput.println ("
viewpointOutput.println ("
viewpointOutput.println

" 37500 " + ztreeTranslation)
viewpointOutput.println
viewpointOutput.println

Viewpoint {");
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

('

Transform {") ;
rotation 0 1 0 0");
translation " + xtreeTranslation +

children");
DEF N_" + viewpointName + "

0 0 -.35"); (" orientation 1
(" }");
(" }»);

75

// Construct Viewpoint looking
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

" 37500 " + ztreeTranslation);
viewpointOutput.println
viewpointOutput.println

Viewpoint {");
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

// Construct Viewpoint looking
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

" 37500 " + ztreeTranslation);
viewpointOutput.println
viewpointOutput.println

Viewpoint {");
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

// Construct Viewpoint looking
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

" 37500 " + ztreeTranslation);
viewpointOutput.println
viewpointOutput.println

Viewpoint {");
viewpointOutput.println
viewpointOutput.println
viewpointOutput.println

South:
n Transform {") ;

rotation 0 1 0 3.14");
translation " + xtreeTranslation +

children");
DEF S_" + viewpointName + "

orientation 1 0 0 -.35");
}");
}");

East:
Transform {");

rotation 0 10 -1.57");
translation " + xtreeTranslation +

children") ;
DEF E_" + viewpointName + "

orientation 1 0 0 -.35");
}");
}");

West:
Transform {");

rotation 0 10 1.57");
translation " + xtreeTranslation +

children");
DEF W_" + viewpointName + "

orientation 1 0 0 -.35");
}");
}");

vrmlOutputFile.close();
lastxDimension = xDimension;
lastxTransform = xTransform;
lastzDimension [xCounter - 1]
lastzTransform [xCounter - 1]

}
lastxTransform = 0;
lastxDimension = 1;

}
viewpointOutputFile.close() ;

}

= zDimension;
= zTransform;

76

APPENDIX D: CREATEVRMLTREE JAVA PROGRAM

//
**

//
// Script Name: CreatelOOOmVRMLTree.java

//
// Description: Create a VRML terrain tree at 1000m post-spacing
resolution
//
// Author: R. Greg Leaver
// Advisor: Don Brutzman
//
// Revised: 1 September 98
//
// Notes: Need one class for each post-spacing

//
//
**

//
**

import j ava.io.*;

public class createlOOOmVRMLtree {
public static void main (String argv []) throws IOException {

// Input stream to get 500m gridded data files to create children in
tree:

FilelnputStream dataSetFile = new FilelnputStream
("500mGridSet.txt");

StreamTokenizer dataSetTokens = new StreamTokenizer
(dataSetFile);

// Input stream to get 1000m parent centers:
FilelnputStream treeSetFile = new FilelnputStream

("1000mParentCenters.txt");
StreamTokenizer treeSetTokens = new StreamTokenizer

(treeSetFile);

// Construct and initialize array:
String childArray [] = new String [16];
for (int i = 0; i <=15; i++) {

dataSetTokens.nextToken();
childArray [i] = dataSetTokens.sval;

}

// Make QuadLOD children:
String childl, child2, child3, child4, parent, parentCenter;
int n = 4;
for (int i = 1; i <=4; i++) {

childl = (childArray [n]).substring(0,29) + ".seabeam.wri";

77

child2 = (childArray [n +1]).substring(0,29) +

".seabeam.wri";
child3 = (childArray [n-3]).substring(0,29) +

".seabeam.wri";
child4 = (childArray [n-4]).substring(0,29) +

".seabeam.wri";
parent = childl.substring(0,16) +

".070.051.1000.seabeam.wri";
if (i == 1 || i == 3)

n = n+2;
else if (i == 2 || i == 4)

n = n+6;

// Obtain parentCenter from file:
treeSetTokens.nextToken();
parentCenter = treeSetTokens.sval;

// Create QuadLOd tree EXTERNPROTOS
String treeName;
treeName = childl.substring(0,IS) +

".070.051.1000.tree.wri";
FileOutputStream vrmlOutputFile = new FileOutputStream

(treeName);
PrintStream vrmlOutput = new PrintStream (vrmlOutputFile);
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

");
vrmlOutput.println

"../../QuadLOD.wrl#QuadLOD" +
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println
vrmlOutput.println

World for QuadLOD PROTO" + "\"
vrmlOutput.println
vrmlOutput.println

"lOOOm/Tiles/" + parent + "\""

"#VRML V2.0 utf8");
"# Terrain Tree");

"") ;
"EXTERNPROTO QuadLOD [");
"field MFString parentUrl ");
"field MFString childlUrl ");
"field MFString child2Url ");
"field MFString child3Url ");
"field MFString child4Url ");
"field SFVec3f parentCenter ");
"field SFVec3f parentSize ");
"field SFVec3f switchSize ");

"eventOut MFNode children ");
"field SFBool enabled ");
"eventin SFBool set_enabled ");
"eventOut SFBool enabled_changed

H1 it + ii \ ii ii ^_

\"");
) ;
"Group { ");
" children [");

Worldlnfo { title " + "\"" + "Tree

+ "}") ;
QuadLOD { ");

parentUrl " + "\"" +

78

vrmlOutput.printin("
"500m/Tiles/" + childl + "\"");

vrmlOutput.printin("
"500m/Tiles/" + child2 + "\"");

vrmlOutput.printin("
"500m/Tiles/" + child3 + "\"");

vrmlOutput.printin("
"500m/Tiles/" + child4 + "\"");

vrmlOutput.printin("
parentCenter);

vrmlOutput.printIn("
130000 ");

vrmlOutput.printin("
130000 ");

vrmlOutput.printIn(" } ")
vrmlOutput.println("] ")
vrmlOutput.println("} ");
vrmlOutputFile.close();

}
}

}

childlUrl " + "\"" +

child2Url " + "\"" +

child3Url " + "\"" +

child4Url " + "\"" +

parentCenter " +

parentSize 76000 50000

switchSize 76000 50000

79

80

APPENDIX E: EXAMPLE VRML TERRAIN TILE FILE STRUCTURE

#VRML V2.0 utf8
Terrain Tile
Autogenera ted by CreateVRMLTerrain Program on 9/15/98
Available at www.stl.nps.navy.mil/-auv/leaver

Model

N353610.W1232629.070.051.1000.seabeam.wri

Based on proposed VRML Metadata Convention of 9/1/98
EXTERNPROTO Metadata [

field MFString xmlurl
eventin MFString set_xmlurl
eventOut MFString xmlurl_changed
eventin SFString elementID
eventOut MFString elementlDs
eventOut SFString tagName
eventOut MFString attributeNames
eventOut MFString attributeValues
eventOut MFString childElements
eventOut MFString childElementTypes
] "../../metadata.wrl"

DEF Tile Metadata {
xmlurl [

"< ?xml version='1.0'? >
<Tile ID = •N353610.W1232629.070.051.1000.seabeam.wrl,>

Title = 'Monterey Bay National Marine Sanctuary Terrain

Subj ect = 'VRML Terrain Model'
Publication_Place = 'Monterey, California'

Publication_Date = '1998'
Creator = 'Greg Leaver'
Contributor = 'Don Brutzman and Ray McClain'
Originator = "Naval Postgraduate School'
Data_Source = 'NOAA Seabeam Survey'
Data_Format = 'Surfer DSAA. Export'
Datum = 'NAD83'
Ellipsoid = 'GRS 1980'

UTM_zone = '10'
North_Bounding_Coordinate_UTM =
South_Bounding_Coordinate_OTM =
West_Bounding_Coordinate_UTM = '
East_Bounding_Coordinate_UTM = '

'4070000'
'3940000'
46000'
53600'

Northwest_Bounding_Coordinate_Latitude = 'N36d46m2'
Southwest_Bounding_Coordinate_Latitude = 'N35d36ml'
Northeast_Bounding_Coordinate_Latitude = 'N36d46m3'
Southeast_Bounding_Coordinate_Latitude = 'N35d36ml'
Northwest_Bounding_Coordinate_Longitude = 'W123d26m5'
Southwest_Bounding_Coordinate_Longitude = 'W123d26m2'
Northeast_Bounding_Coordinate_Longitude = 'W122d35m4'
Southeast_Bounding_Coordinate_Longitude = 'W122d36m0'
maxDepth = '-1449.41'
minDepth = '-3811.36'

81

II
postSpacing = '1000'
</Tile>", "../N353610.W1232629.070.051.1000.seabeam.xml

U 3
}
Group {
children [

Transform {
translation 0 0 130000
children [

DEF NavigationMarker Transform {
bboxSize 25 25 25
translation 38000 25000 65000
scale 400 400 400
children [

LOD {
range [200, 400, 600]
level t

Group {
children [

Anchor {
description "click on sphere to remove marker"
children Inline { url

"../../Icons/spherearrows.wrl" }

}
Group {
children [

DEF SphereMarker TouchSensor { }
Inline { url "../../Icons/sphere.wrl" }

]
}

Transform {
translation 20 0 0
children

Anchor {
url "#E_353610_1232629_070_051_1000"
description "East View from this location

1000m. resolution"

1.0

0.0

children
Billboard {

axisOfRotation 0 10
children

Shape {
appearance Appearance {

material Material {
emissiveColor 1.0 1.0

diffuseColor 0.0 0.0

}
}
geometry Text {

string "E"
fontstyle FontStyle {

82

["MIDDLE","MIDDLE"]

Style "BOLD"
justify

size 8

}
}
Transform {
translation 0 0 -20
children

Anchor {
url "#N_353610_1232629_070_051_1000"
description "North View from this location

1000m resolution"
children

Billboard {
axisOfRotation 0 10
children
Shape {

appearance Appearance {
material Material {

emissiveColor 1.0 1.0 1.0
diffuseColor 0.0 0.0 0.0

}
}
geometry Text {

string "N"
fontStyle FontStyle {

style "BOLD"
justify ["MIDDLE","MIDDLE"]
size 8

}
}

}
}

Transform {
translation 0 0 20
children

Anchor {
url «#S_353610_1232629_070_051_1000"

description "South View from this location
1000m resolution"

children
Billboard {

axisOfRotation 0 10
children

Shape {
appearance Appearance {

83

1.0

0.0

["MIDDLE","MIDDLE"]

material Material {
emissiveColor 1.0 1.0

diffuseColor 0.0 0.0

}
}
geometry Text {

string "S"
fontStyle FontStyle {
style "BOLD"
justify

size 8

resolution"

1.0

0.0

}
}
Transform {
translation -20 0 0
children

Anchor {
url "#W_353610_1232629_070_051_1000"
description "West View from this location 1000m

children
Billboard {

axisOfRotation 0 10
children

Shape {
appearance Appearance {

material Material {
emissiveColor 1.0 1.0

[»MIDDLE","MIDDLE"]

diffuseColor 0.0 0.0

}
}
geometry Text {

string "W"
fontStyle FontStyle {

style "BOLD"
justify

size 8

84

Transform {
translation 0 18 0
children

Billboard {
axisOfRotation 0 10
children

Shape {
appearance Appearance {

material Material {
emissiveColor 1.0 1.0 1.0
diffuseColor 0.0 0.0 0.0

}
}
geometry Text {

string [»4005000 N","498000 E"]
fontstyle FontStyle {

justify t"MIDDLE",»MIDDLE"]
size 6

}
}

}
}

}
]
}

Group {
children [

Anchor {
description "click on box to remove marker"
children Inline { url "../../Icons/boxarrows.wrl" }

}
Group {
children [

DEF BoxMarker TouchSensor { }
Inline { url "/../../Icons/box.wrl" }

]
}

]
}
Group {
children t

USE BoxMarker
Inline { url "../../Icons/box.wrl" }

]
}
Group { }
]

}
]
}
DEF Topography Transform {
scale 111
children [

85

Shape {
appearance Appearance {

material Material { }
texture ImageTexture {

url
"../Images/N353610. W1232629.070.051.1000.seabeam.jpg"

}
}
geometry ElevationGrid {

xDimension 77
zDimension 131
xSpacing 1000
zSpacing 1000
solid FALSE
creaseAngle 0.785
height [

-3519 -3511 -3503 -3493 -3484 -3476 -3469 -3464 -3453 -3445 -3438 -3430
-3415 -3400 -3386 -3371 -3355 -3343 -3332 -3314 -3293 -3272 -3260 -3248
-3245 -3241 -3230 -3214 -3200 -3175 -3158 -3145 -3093 -3042 -3041 -3055
-3071 -3077 -3048 -3019 -2995 -2975 -2959 -2951 -2945 -2937 -2902 -2829

-2746 -2646 -2615 -2591 -2597 -2601 -2628 -2605

-2464 -2426 -2406 -2362 -2325 -2270 -2244 -2226

-3801 -3804 -3806 -3807 -3806 -3805 -3806 -3807

-3692 -3649 -3613 -3571 -3510 -3426 -3333 -3295

-2765 -2655 -2776 -2991 -3111 -3192 -3193 -3170

-3230

]

}

-3256

}
]
}

-3284

]
}

-3301 -3341

-2558 -2506 -2533 -2506
-2194 -2176 -2155 -2167
-3809 -3797 -3769 -3734
-3281 -3155 -3104 -2961
-3162 -3146 -3146 -3196

]

DEF TimeMarker TimeSensor {
cyclelnterval 1.0
loop FALSE
startTime 0.0
stopTime 1.0

DEF ScaleMarker Positionlnterpolator {
key [0.0 1.0]
keyValue [0.01 0.01 0.01, 0.01 0.01 0.01]

ROUTE BoxMarker.touchTime TO TimeMarker.set_startTime
ROUTE SphereMarker.touchTime TO TimeMarker.set_startTime
ROUTE TimeMarker. fraction_changed TO ScaleMarker. set_fraction

86

ROUTE ScaleMarker.value_changed TO NavigationMarker.set_scale

87

88

APPENDIX F: EXAMPLE VRML TERRAIN TILE SCENE GRAPH

File N353610.W1232629.070.051.1000.seabeam.wri

=== World Structure ===

World

+ Group

+ Transform

I
+ DEF NavigationMarker

+ Trans form

+ LOD

+ Group

I
+ Anchor

+ Inline

--Group

+ DEF SphereMarker

I I
| + TouchSensor

I
+ Inline

+ Transform

I
+ Anchor

I
+ Billboard

I
+ Shape

I
+ Appearance

I I
| + Material

I
+ Text

+ FontStyle

+ Transform

+ Anchor

89

+ Billboard

+ Shape

+ Appearance

I I
| + Material

I
+ Text

I
+ FontStyle

+ Transform

+ Anchor

I
+ Billboard

I
+ Shape

-I
+ Appearance

I I
| + Material

+ Text

I
+ FontStyle

+ Transform

+ Anchor

I
+ Billboard

I
+ Shape

+ Appearance

I I
| + Material

+ Text

I
+ FontStyle

+ Transform

+ Billboard

+ Shape

I
+ Appearance

I I
I + Material

90

+ Text

I
+ FontStyle

+ Group

I
+ Anchor

I I
| + Inline

I
+ Group

+ DEF BoxMarker

I I
| + TouchSensor

+ Inline

--Group

+ USE BoxMarker

I I
| + TouchSensor

I
+ Inline

+ Group

+ DEF Topography

I
+ Transform

I
+ Shape

+ Appearance

I
+ Material

I
+ ImageTexture

+ ElevationGrid

-DEF TimeMarker

+ TimeSensor

+ DEF ScaleMarker

I
+ Positionlnterpolator

--ROUTE BoxMarker.touchTime TO TimeMarker.set startTime

91

+ ROUTE SphereMarker.touchTime TO TimeMarker.set_startTime

+ ROUTE TimeMarker.fraction_changed TO ScaleMarker.set_fraction

I
+ ROUTE ScaleMarker.value_changed TO NavigationMarker.set_scale

92

APPENDIX G: EXAMPLE XML FILE

File: N364630.W1223547.070.051.1000.seabeam.wri

<?xml version= "1.0"?>
<Tile ID = "N364630.W1223547.070.051.1000.seabeam.wri">
Title = "Monterey Bay National Marine Sanctuary Terrain

Model"
Subject = "VRML Terrain Model"
Publication_Place = "Monterey, California"
Publication_Date = "1998"
Creator = "Greg Leaver"
Contributor = "Don Brutzman and Ray McClain"
Originator = "Naval Postgraduate School"
Data_Source = "NOAA Seabeam Survey"
Data_Format = "Surfer DSAA Export"
Datum = "NAD83"
Ellipsoid = "GRS 1980"
UTM_zone = "10"
North_Bounding_Coordinate_UTM = "4200000"
South_Bounding_Coordinate_UTM = "4070000"
West_Bounding_Coordinate_UTM = "536000"
East_Bounding_Coordinate_UTM = "612000"
Northwest_Bounding_Coordinate_Latitude = "N37d56m4"
Southwest_Bounding_Coordinate_Latitude = "N36d46m3"
Northeast_Bounding_Coordinate_Latitude = "N37d56m2"
Southeast_Bounding_Coordinate_Latitude = "N36d46m0"
Northwest_Bounding_Coordinate_Longitude = "W122d35m2"
Southwest_Bounding_Coordinate_Longitude = "W122d35m4"
Northeast_Bounding_Coordinate_Longitude = "W121d43m3"
Southeast_Bounding_Coordinate_Longitude = "W121d44m4"
maxDepth = "2.06128"
minDepth = "-2257.6"
postSpacing = "1000"

</Tile>

93

94

APPENDIX H: EXAMPLE VRML TERRAIN TREE FILE STRUCTURE

#VRML V2.0 Utf8
Terrain Tree
Autogenerated by CreateVRMLTree Program on 9/15/98
N353610.W1232629.070.051.1000.tree.wri
Available at www.stl.nps.navy.mil/-auv/leaver

EXTERNPROTO QuadLOD [
field MFString parentUrl
field MFString childlUrl
field MFString child2Url
field MFString child3Url
field MFString child4Url
field SFVec3f parentCenter
field SFVec3f parentSize
field SFVec3f switchSize
eventOut MFNode children
field SFBool enabled
eventin SFBool set_enabled
eventOut SFBool enabled_changed
]
"http: //www. stl .nps .navy .mil/leaver/MBNMSterrain/QuadLOD.wrl#QuadLOD"]

Group {
children [
Worldlnfo { title "Tree World for QuadLOD PROTO"}
QuadLOD {

parentUrl, [http: //www. stl. nps. navy .mil/leaver/MBNMSterrain/lOOOm/
Tiles/N353610.W1232629.070.051.1000.seabeam.wri"]

childlUrl
["http://ww.stl.nps.navy.mil/leaver/MBNMSterrain/500m/Tiles/N353610.Wl
232629.035.025.0500.seabeam.wri"]

child2Url
["http: //www. stl .nps .navy.mil/leaver/MBNMSterrain/500m/Tiles/N353613 .Wl
230119.035.025.0500.seabeam.wri"]

child3Url
["http: //www. stl .nps .navy .mil/leaver/MBNMSterrain/500m/Tiles/N361123.Wl
230120.035.025.0500.seabeam.wri"]

child4Url
["http://www.stl.nps.navy.mil/leaver/MBNMSterrain/500m/Tiles/N361120.Wl
232641.035.025.0500.seabeam.wri"]

parentSize 76000 50000 130000
switchSize 76000 50000 130000

}
]

95

96

APPENDIX I: EXAMPLE VRML TERRAIN TREE SCENE GRAPH

File N353610.W1232629.070.051.1000.tree.wri

=== World Structure ===

World

I
+ EXTERNPROTO QuadLOD

I
+ Group

I
+ Worldlnfo

+ QuadLOD

=== Scene Graph ===

EXTERNPROTO QuadLOD

World

+ Group

I
+ Worldlnfo

I
+ QuadLOD

97

98

LIST OF REFERENCES

Abemathy, M. and Shaw, S., "Integrating Geographic Information in VRML Worlds,"
Proceedings VRML 98: Third Symposium of the Virtual Reality Modeling Language,
Monterey, California, February 16-19,1998, pp. 107-114. Available at:
http://ece. uwaterloo. ca/vrml98/cdrom/papers/abernath/abernath. pdf

Ames, L.A., Nadieau, D.R., and Moreland, J.L., The VRML 2.0 Sourcebook, John
Wiley & Sons, NewYork, 1997. Information available at:
http://www, wiley. com/compbooks/vrml2sbk/cover/cover. htm

Brutzman, Don, "The Virtual Reality Modeling Language and Java," Communications of
the ACM, vol. 41 no. 6, June 1998,
pp. 57-64. Available at http://ww.stl.nps.navy.mil/~brutzman/vrml/vrmljava.pdf

Coryphaeus, 3D World Viewer/Generation Software, August 28,1998. Information
available at at http://www. coryphaeus, com

Cybertrek, 3D World Viewer/Generation Software, July 29,1998. Information available
at http://www.c-trek.com

Fairborn, David, and Parsley, Scott, "The Use of VRML for Cartographic Presentation,"
Computers and Geosciences, vol. 23, no. 4, May 1997, pp 475-481

FGDC - Federal Geographic Data Committee, "FGDC Content Standard for Digital
Metadata," June 8, 1994. Availableat: http://fgdc.er. usgs.gov/

GeoVRMLWorking Group, 1998, "GeoVRML RFC 1: Coordinate Systems Version 1,"
July 21, 1998, Available at: http://www.ai.sri.com/geovrml/rfcl.html

Iverson, Lee, "GeoVRML Working Group Home Page," July 21,1998. Available at
http://www, ai. sri. com/~leei/geovrml

Lipkin, Daniel, 1998. "Metadata Node Specification," September 1,1998. Available at
http://www, vrml. org/WorkingGroups/dbwork/metadata. html

MLML - Moss Landing Marine Laboratories, Bathymetric Data Sets, USGS 8mm
Archives Extraction, circa 1985.

Monterey Bay National Marine Santurary Home Page, August 25, 1998. Available at
http://bonita. mbnms. nos. noaa.gov/

McClain, Ray, Gridded Bathymetric Data Sets, Moss Landing Marine Laboratories,
1998.

99

NOAA - National Oceanic and Atmospheric Administration Scientific Research Plan for
the Monterey Bay National Marine Sanctuary, September, 1993

Reddy, Martin. "The QuadLOD node for VRML," June 13,1998. Available at
http://www. ai. sri. com/~reddy/zeovrml/new lodJ

Reddy, Martin, "The Visibilitylnline node for VRML," May 4,1998. Available at
http://www, ai. sri. com/~reddy/zeovrml/new inline/

Rhyne Theresa Marie. "Integrating the Assocation for Computing Machinery's Special
Interest on Computer Graphics (ACM - SIGGRAPH) Activities with the International
Cartographic Association's (ICA) Commission on Visualization." Available at:
http://www.geoz.psu. edu/ica/icavis/vis-acm. html

RIS - Rapid Imaging Software Home Page, 3D Terrain Modeling Tool, May 24,1998.
Available at http://www, landform, com/vrml. htm

Seamless Solutions Inc., VRML Terrain Navigator, 1998. Information available at:
http://www, seamless-solutions, com/

Silicon Graphics, Cosmo Player Version 2.1 VRML Browser, 1998. Available at:
http://vrml. sgi. com.

Surfer for Windows, 3D Map Generation Program, Golden Software, 1998. Information
available at: http://www, zoldensoftware. com/

Terry Jr., N.T." How to Read the Universal Transverse Mercator (UTM) Grid," GPS
World, p. 32, April 1996, Available at http://zeozraphv.tan.com/msubl4.htm

TNTmips, Map and Image Processing System, Microimages, Inc., 1998. Information
available at: http://www, microimazes. com/

USGS - United States Geological Survey, Bathymetric Data Set Archives, 1998.
Available at: httD.V/woodshole.er.uszs.Zov/datal/CDROMS/monterey/and
http://walrus, wr. uszs.zov/docs/infobank/bear/prozrams/html/main/infohome. html

VRML -Virtual Reality Modeling Language, International Standard ISO/IEC 14772-
1:1997. Available at: http://www. vrml. orz/VRML97/

Weibel, Stuart, 1998. "Dublin Core Metadata," November 2,1998. Available at:
http://purl. orz/metadata/dublin core

XML - Extensible Markup Language, REC-xml-19980210 W3C Recommendation, 10-
February-1998. Available at: http://www. w3. orz/TR/REC-xml. html

100

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
Monterey, California 93943-5101

3. Dr. Don Brutzman, Code UW/Br 2
Naval Postgraduate School
Monterey, California 93943-5101

4. RayMcClain ". 1
Network and Computing Services
Moss Landing Marine Laboratories
P.O. Box 450
Moss Landing, California 95039

5. Dr. Michael R. Macedonia 1
Chief Scientist and Technical Director
US Army STRICOM
12350 Research Parkway
Orlando, Florida 32826-3276

6. Michael McCann 1
Monterey Bay Aquarium Research Institute (MBARI)
P.O. Box 628
Moss Landing, California 95039-0628

Dr. Michael J. Zyda, Chair, Code CS/Zk
Modeling Virtual Environments and Simulation (MOVES)
Naval Postgraduate School
Monterey, California 93943-5101

Rex Buddenberg, Code SM/Bu
Naval Postgraduate School
Monterey, California 93 943 -5101

101

Dr. Jim Eagle, Chair, Code UW...
Naval Postgraduate School
Monterey, California 93943-5101

10. Dr. Marcia McNutt (MBARI)
Monterey Bay Aquarium Research Instiute
P.O. Box 628
Moss Landing, California 95039-0628

11. Brian Blau
Intervista Software
181 Fremont, Suite 200
San Francisco, California 94015

12. Toni Parisi
Intervista Software
181 Fremont, Suite 200
San Francisco, California 94015

13. Mike Abernathy
Rapid Imaging Software
P.O. Box 8219
Albuquerqe, New Mexico, 87198

14. Martin Reddy
SRI International
333 Ravenswood Ave.
Menlo Park, California 94025

15. Theresa-Marie Rhyne
Lockheed Martin Technical Services
US EPA Scientific Visualization Center
86 Alexander Drive
Research Triangle Park, North Carolina 27711

16. Carol Wideman
President
Seamless Solutions, Inc.
3504 Lake Lynda Drive, Suite 390
Orlando, Florida 32817

17. Greg Leaver
2921 N. Downing
Bethany, Oklahoma 73008

102

18. Dr. Gary Greene
Moss Landing Marine Laboratories
P.O. Box 450
Moss Landing, California 95039

19. Lee Iverson
SRI International
333 Ravenswood Ave.
Menlo Park, California 94025

103

